Does androgen insufficiency cause lacrimal gland inflammation and aqueous tear deficiency? (1/69)

PURPOSE: The current investigators have shown that androgen treatment suppresses inflammation and stimulates the function of lacrimal glands in mouse models of Sjogren's syndrome. Recently, others have hypothesized that androgen insufficiency induces an autoimmune process in lacrimal tissue, leading to inflammation, a Sjogren's syndrome-like pathology, and aqueous tear deficiency. The purpose of the present study was to test this hypothesis. METHODS: Lacrimal glands were obtained from adult testicular feminized (Tfm) and control mice; castrated rats, guinea pigs, and rabbits; and castrated rats without anterior or whole pituitary glands and were processed for histology and image analysis. Tear volumes were measured in mice, in patients taking antiandrogen medications, and in age-matched human control subjects. RESULTS: Tfm mice, which are completely resistant to classical androgen action, did not have increased lymphocyte infiltration in their lacrimal glands or decreased tear volumes. No inflammation was evident in lacrimal tissues of male or female rats, guinea pigs, or rabbits 12 to 31 days after castration, no inflammation existed in rat lacrimal glands 15 to 31 days after orchiectomy and pituitary removal, and no aqueous tear deficiency was apparent in patients receiving antiandrogen therapy. CONCLUSIONS: Androgen deficiency may promote the progression of Sjogren's syndrome and its associated lacrimal gland inflammation, meibomian gland dysfunction, and severe dry eye. However, androgen insufficiency alone does not cause lacrimal gland inflammation, a Sjogren's syndrome-like pathology in lacrimal tissue, or aqueous tear deficiency in nonautoimmune animals and humans.  (+info)

Immunoendocrine interactions during chronic cysticercosis determine male mouse feminization: role of IL-6. (2/69)

Taenia crassiceps cysticercosis results in an impressive feminization in male mice during chronic infection, characterized by increased serum estradiol levels 100 times their normal values, while those of testosterone and dihydrotestosterone are decreased by 85 and 95% respectively. Concomitantly, the levels of follicle-stimulating hormone and IL-6 are increased 70 and 90 times their normal values in the infected male mice. Since a specific Th1/Th2 shift of the immune response has been previously reported during the chronic infection, and this shift may be associated with the feminization process, we proposed that this shift is induced by immunoendocrine interactions during the disease, and this gives way to a change in the initial resistance to the infection in the male mice, which become as susceptible as female mice. To confirm this hypothesis, we depleted immune system activity in two different ways: total body irradiation and neonatal thymectomy. Our results show that when immune system activity is depleted using either strategy, the male mice do not feminize, and the levels of follicle-stimulating hormone and IL-6 are inhibited. Depletion of IL-6 using IL-6(-/-) knockout mice does not produce the feminization process stated above, while restitution of the IL-6(-/-) knockout, irradiated, and thymectomized mice with murine recombinant IL-6 restores the feminization process. Expression of the IL-6 gene was found only in the testes and spleen of infected animals. Our results illustrate the importance of immunoendocrine interactions during a parasitic disease and show a possible new mechanism of parasite establishment in an initially resistant host.  (+info)

Abolition of hypertension-induced end-organ damage by androgen receptor blockade in transgenic rats harboring the mouse ren-2 gene. (3/69)

A sexual dimorphism in hypertension has been observed in both human and laboratory animal studies. The mechanisms by which male sex hormones regulate cardiovascular homeostasis are still not yet fully understood and represent the subject of this study. The possible involvement of androgen receptors in the development of hypertension and end-organ damage in transgenic rats harboring the mouse Ren-2 renin gene [TGR(mREN2)27] was studied. Male TGR(mREN2)27 rats were treated with the androgen receptor antagonist Flutamide starting at 4 wk of age. Also, an androgen receptor mutation (testicular feminization mutation [tfm]) was introduced in these rats by crossbreeding male TGR(mREN2)27 rats with tfm rats. The resulting offspring male rats that contain the tfm mutation are insensitive to androgens. Flutamide treatment or tfm mutation produced a significant attenuation of the development of hypertension. Besides a reduction in cardiac hypertrophy, urinary albumin excretion was blunted and no histologic characteristics of end-organ damage were observed in the kidney after Flutamide treatment. Testosterone levels increased 15-fold after Flutamide treatment and 2.7-fold by the tfm mutation. Also, plasma estrogens and luteinizing and follicle-stimulating hormones were significantly increased. Plasma renin concentrations and activity but not plasma angiotensinogen were reduced. Our results indicate that androgens contribute not only to the development of hypertension, but even more importantly to end-organ damage in TGR(mREN2)27 rats.  (+info)

Major hyperestrogenism in a feminizing adrenocortical adenoma despite a moderate overexpression of the aromatase enzyme. (4/69)

A 30-year-old male was referred for the rapid development of gynecomastia, and dramatic hyperestrogenemia was assessed: plasma estrone, estradiol but also cortisol were not suppressed by high-dose dexamethasone, while gonadotropin pulsatility was completely abolished. A 60-mm right adrenal tumor was evidenced on computed tomography-scan, and the patient underwent adrenalectomy. The tumor was found to express a moderate increase in aromatase activity compared with adjacent non-neoplastic adrenal tissue. Quantitative RT-PCR also showed a weak and non-significant increase in total aromatase mRNA in the tumor compared with normal adrenal tissue. Aromatase transcripts were mainly promoter PII-derived, but different patterns of aromatase minor transcripts were found: promoter I.3- and I.6-derived transcripts were identified in the tumor, while only promoter I.4-derived transcripts were found in normal adrenal. This case report demonstrates that a sharp aromatase overexpression is not a prerequisite for clinical and biochemical hyperestrogenism, and further characterizes the aromatase promoter utilization in this feminizing adrenocortical tumor and in the normal adrenal cortex.  (+info)

Variable male potential rate of reproduction: high male mating capacity as an adaptation to parasite-induced excess of females? (5/69)

Numerous animals are known to harbour intracytoplasmic symbionts that gain transmission to a new host generation via female eggs and not male sperm. Bacteria of the genus Wolbachia are a typical example. They infect a large range of arthropod species and manipulate host reproduction in several ways. In terrestrial isopods (woodlice), Wolbachia are responsible for converting males into females (feminization (F)) in some species, or for infertility in certain host crosses in other species (cytoplasmic incompatibility (CI)). Wolbachia with the F phenotype impose a strong excess of females on their host populations, while Wolbachia expressing CI do not. Here, we test the possibility that male mating capacity (MC) is correlated with Wolbachia-induced phenotype. We show that males of isopod hosts harbouring F Wolbachia possess a strong MC (i.e. are able to mate with several females in a short time), while those of species harbouring CI Wolbachia possess a weaker MC. This pattern may be explained either by the selection of high MC following the increase in female-biased sex ratios, or because the F phenotype would lead to population extinction in species where MC is not sufficiently high. This last hypotheses is nevertheless more constrained by population structure.  (+info)

Cholinergic control of synchronized seminal emissions in Drosophila. (6/69)

In many animal species, copulation involves the coordinated release of both sperm and seminal fluid, including substances that change female fertility and postmating behavior. In Drosophila melanogaster, these substances increase female fertility and prevent mating with a second male. By using a PGal4 strain, we targeted together with other cells a dozen cholinergic neurons found only in the male abdominal ganglion (Abg-MAch). Genetic feminization apparently deleted these neurons in males and significantly increased their copulation duration, blocked their fertility in 60% of cases, and only weakly repressed remating in females. Genetic repression of Gal4 activity in all cholinergic neurons completely rescued copulation duration and fertility, and totally prevented remating, indicating that Abg-MAch neurons were functional. The conditional blocking of the synaptic activity of these neurons during copulation induced separate effects on the transfer of the seminal substances involved in fertilization and those involved in remating. These effects were dissociated only when Abg-MAch neurons were feminized, indicating that their presence is required to synchronize the emission of the male substance(s) that changes reproductive behaviors.  (+info)

Intersex and gender assignment; the third way? (7/69)

The birth of a new baby is one of the greatest wonders of nature and one of the most exciting events known to man. The first question that is usually posed by the mother or father is "is it a boy or a girl?"; without this information the new parents cannot even formulate the second question which is usually "is he/she alright?". It is no wonder that the birth of a child with complex genital anomalies where the sex of rearing is uncertain at birth, presents difficult clinical and ethical issues.  (+info)

Host resistance does not explain variation in incidence of male-killing bacteria in Drosophila bifasciata. (8/69)

BACKGROUND: Selfish genetic elements that distort the sex ratio are found widely. Notwithstanding the number of records of sex ratio distorters, their incidence is poorly understood. Two factors can prevent a sex ratio distorter from invading: inability of the sex ratio distorter to function (failure of mechanism or transmission), and lack of drive if they do function (inappropriate ecology for invasion). There has been no test to date on factors causing variation in the incidence of sex ratio distorting cytoplasmic bacteria. We therefore examined whether absence of the male-killing Wolbachia infection in D. bifasciata in Hokkaido island of Japan, in contrast to the presence of infection on the proximal island of Honshu, was associated with failure of the infection to function properly on the Hokkaido genetic background. RESULTS: The male-killer both transmitted and functioned well following introgression to each of 24 independent isofemale inbred lines carrying Hokkaido genetic backgrounds. This was maintained even under stringent conditions of temperature. We therefore reject the hypothesis that absence of infection is due to its inability to kill males and transmit on the Hokkaido genetic background. Further trap data indicates that D. bifasciata may occur at different densities in Hokkaido and Honshu populations, giving some credence to the idea that ecological differentiation could be important. CONCLUSIONS: The absence of the infection from the Hokkaido population is not caused by failure of the male-killer to function on the Hokkaido genetic background.  (+info)