Modulation of distal colonic epithelial barrier function by dietary fibre in normal rats. (1/971)

BACKGROUND: Dietary fibre influences the turnover and differentiation of the colonic epithelium, but its effects on barrier function are unknown. AIMS: To determine whether altering the type and amount of fibre in the diet affects paracellular permeability of intestinal epithelium, and to identify the mechanisms of action. METHODS: Rats were fed isoenergetic low fibre diets with or without supplements of wheat bran (10%) or methylcellulose (10%), for four weeks. Paracellular permeability was determined by measurement of conductance and 51Cr-EDTA flux across tissue mounted in Ussing chambers. Faecal short chain fatty acid (SCFA) concentrations were assessed by gas chromatography, epithelial kinetics stathmokinetically, and mucosal brush border hydrolase activities spectrophotometrically. RESULTS: Body weight was similar across the dietary groups. Conductance and 51Cr-EDTA flux were approximately 25% higher in animals fed no fibre, compared with those fed wheat bran or methylcellulose in the distal colon, but not in the caecum or jejunum. Histologically, there was no evidence of epithelial injury or erosion associated with any diet. The fibres exerted different spectra of effects on luminal SCFA concentrations and pH, and on mucosal indexes, but both bulked the faeces, were trophic to the epithelium, and stimulated expression of a marker of epithelial differentiation. CONCLUSIONS: Both a fermentable and a non-fermentable fibre reduce paracellular permeability specifically in the distal colon, possibly by promoting epithelial cell differentiation. The mechanisms by which the two fibres exert their effects are likely to be different.  (+info)

Degradation of two protein sources at three solids retention times in continuous culture. (2/971)

Effects of solids retention times (SRT) of 10, 20, and 30 h on protein degradation and microbial metabolism were studied in continuous cultures of ruminal contents. Liquid dilution rate was constant across all retention times at .12 h(-1) (8.3 h mean retention time). Two semipurified diets that contained either soybean meal (SBM) or alfalfa hay (ALFH) as the sole nitrogen source were provided in amounts that decreased as SRT was increased. Digestion coefficients for DM, NDF, and ADF increased with increasing SRT. Digestion coefficients for nonstructural carbohydrates were higher in the SBM diet than in the ALFH diet but were not affected by SRT. Protein degradation in the ALFH diet averaged 51% and was unaffected by retention time. In the SBM diet, digestion of protein was 77, 78, and 96% at 10-, 20-, and 30-h retention times, respectively. Microbial efficiency decreased with increasing SRT and was greater for the SBM than for the ALFH diet. Efficiencies ranged from 30.6 to 35.7 and 20.8 to 29.2 g of N/kg of digested DM for the SBM and ALFH diets, respectively, as SRT decreased from 30 to 10 h. The diaminopimelic acid content of the microbes increased as SRT increased, indicating that changes in microbial species occurred owing to passage rates. From these results, we concluded that the digestibility decreases associated with increased ruminal turnover rates may be less for nonstructural carbohydrates and protein than for the fiber fractions.  (+info)

Protection by short-chain fatty acids against 1-beta-D-arabinofuranosylcytosine-induced intestinal lesions in germfree mice. (3/971)

In germfree mice, the administration of short-chain fatty acids (SCFA) protected the intestinal mucosa from damage produced by 1-beta-D-arabinofuranosylcytosine (Ara-C). Animals receiving SCFA and Ara-C had intestinal morphologies closer to normal than the control animals, which had severe intestinal lesions. We concluded that orally administrated SCFA reduce intestinal lesions, improving the mucosa pattern of the small intestine and colon.  (+info)

Maintenance and regulation of the pH microclimate at the luminal surface of the distal colon of guinea-pig. (4/971)

1. The fluorescent dye 5-N-hexadecanoyl-aminofluorescein (HAF) was used to study the mechanisms involved in maintaining a relatively constant luminal surface pH (pHs) in the distal colon of the guinea-pig. The fatty acyl chain of the HAF molecule inserts into the apical membrane of epithelial cells. This allows a continuous measurement of the surface pH for several hours. 2. The localization of HAF was confirmed by confocal laser-scanning microscopy and by using monoclonal antibodies against fluorescein. The insertion of HAF into the apical membrane of the colonocytes did not change the transepithelial conductance or the short-circuit current of the epithelium. 3. With the HAF method a pH microclimate was confirmed at the colonic surface. Although the pH of the bulk luminal solution was decreased in bicarbonate-containing solution from 7.4 to 6.4 the pHs changed only in the range 7.54-6.98. 4. In the absence of bicarbonate pHs almost followed changes of bulk luminal pH. In the presence of bicarbonate there was a decrease in pHs after removal of chloride from the luminal side and an increase in pHs after addition of butyrate to the luminal solution. This suggests the involvement of a bicarbonate-anion exchange in bicarbonate secretion: a Cl--HCO3- as well as a short-chain fatty acid--HCO3- exchange. 5. The apical K+-H+-ATPase in the distal colon of guinea-pig has little influence on pHs in the presence of physiological buffer concentrations. 6. Our findings indicate that bicarbonate plays a major role in maintaining the pH microclimate at the colonic surface.  (+info)

Modulation of lipid metabolism and spiramycin biosynthesis in Streptomyces ambofaciens unstable mutants. (5/971)

Streptomyces ambofaciens is prone to genetic instability involving genomic rearrangements at the extremities of the chromosomal DNA. An amplified DNA sequence (ADS205), including an open reading frame (orfPS), is responsible for the reversible loss of spiramycin production in the mutant strain NSA205 (ADS205(+) Spi-). The product of orfPS is homologous to polyketide synthase systems (PKSs) involved in the biosynthesis of erythromycin and rapamycin and is overexpressed in strain NSA205 compared with the parental strain RP181110. As PKSs and fatty acid synthase systems have the same precursors, we tested the possibility that overexpression of orfPS also affects lipid metabolism in strain NSA205. This report focuses on comparative analysis of lipids in strain RP181110, the mutant strain NSA205, and a derivative, NSA228 (ADS205(-) Spi+). NSA205 showed a dramatically depressed lipid content consisting predominantly of phospholipids and triacylglycerols. This lipid content was globally restored in strain NSA228, which had lost ADS205. Furthermore, strains RP181110 and NSA205 presented similar phospholipid and triacylglycerol compositions. No abnormal fatty acids were detected in NSA205.  (+info)

Metabolism of short-chain fatty acids by rat colonic mucosa in vivo. (6/971)

To determine the influence of substrate concentration and substrate interactions on short-chain fatty acid metabolism in vivo, a surgical procedure was established. Rats were surgically operated to cannulate a 5-cm segment of proximal colon, isolate the vasculature, and cannulate the right colic vein draining this segment. Thus metabolism was restricted to the defined colonic segment. The appearance of total (14)C and (14)CO(2) in the mesenteric blood stabilized after 30 min of perfusion. Increasing luminal concentrations of butyrate from 2 to 40 mmol/l resulted in linear increases in total (14)C, but (14)CO(2) production from [(14)C]butyrate increased as a function of concentration only up to 10 mmol/l and was stable at higher butyrate concentrations. In addition to CO(2), 3-hydroxybutyrate and lactate were major metabolites of acetate and butyrate in vivo. The presence of a mixture of alternative substrates in the lumen had no influence on the metabolism of butyrate to CO(2) but significantly reduced the metabolism of acetate to CO(2). When compared with young (4 mo old) animals, transport of butyrate was significantly lower for aged (48 mo old) animals, as evidenced by the rate of appearance in blood of total (14)C (P = 0.04) and (14)C in butyrate (P = 0.03), but metabolism was similar, since differences were not significant for (14)C in the major metabolites 3-hydroxybutyrate (P = 0.06) and CO(2) (P = 0.17). These results show that important aspects of short-chain fatty acid transport and metabolism are not predicted from data using isolated colonocytes but require study using an in vivo model.  (+info)

Influence of mass and volume of ruminal contents on voluntary intake and digesta passage of a forage diet in steers. (7/971)

To assess the influence of volume and mass of ruminal contents on voluntary intake and related variables, five ruminally cannulated steers (550 kg) were fed a low-quality forage diet (43.1% ADF, 8.1% CP) in a 5 x 5 Latin square experiment. Mass and volume of ruminal contents were altered by adding varying numbers and weights of filled tennis balls (6.7-cm diameter) to the rumen immediately before the initiation of each experimental period. Treatments consisted of 0 balls (control), 50 balls with a 1.1 specific gravity (SG), 100 balls with a 1.1 SG, 50 balls with a 1.3 SG, and 100 balls with a SG of 1.3. The total volume of balls was 7.25 and 14.5 L for 50 and 100 balls, respectively. The total weight of balls was 8.5 and 17 kg for 50 and 100 balls with a 1.1 SG and 10.75 and 21.5 kg for 50 and 100 balls with a 1.3 SG, respectively. Daily DMI was 8.3, 7.3, 7.0, 6.5, and 6.0 kg for control; 50, 1.1 SG; 50, 1.3 SG; 100, 1.1 SG; and 100, 1.3 SG, respectively. Addition of balls to the rumen reduced (P < .01) DMI. Increasing the number (P < .01) and SG (P <. 01) of the balls decreased DMI further. However, digestibilities of DM, NDF, ADF, and CP were not influenced by treatment. Increasing the number of balls in the rumen increased (P < .05) rate of passage of digesta from the rumen, but increasing SG of the balls did not alter rate of passage. There was a treatment x hour interaction (P < .05) in the proportion of ruminal digesta with a functional specific gravity (FSG) less than 1.1, which decreased with time after feeding for the control but increased with time after feeding for other treatments. Ruminal passage rate of inert particles added in the rumen of different SG (1.1 and 1.3) and length (1 and 3 mm) decreased (P < .05) as SG of the balls increased. Mean fecal particle size was greater for those treatments with the heavier balls. Both the number and SG of balls (P < .10) influenced total VFA, and total concentrations were greater for the control and for the 1.1 SG than for the 1.3 SG treatments.  (+info)

Enhanced mucosal re-epithelialization induced by short chain fatty acids in experimental colitis. (8/971)

The short chain fatty acids (SCFA) are the best nutrients for the colonocytes. Glucose is poorly used as a fuel but may be transformed into SCFA by colonic bacteria. The aim of this study was to investigate the effect of SCFA or glucose on experimental colitis. Colitis was induced in 30 Wistar rats by colonic instillation of 4% acetic acid. Five days later they were randomized to receive twice a day colonic lavage containing saline (controls, N = 10), 10% hypertonic glucose (N = 10) or SCFA (N = 10) until day 8 when they were killed. At autopsy, the colon was removed and weighed and the mucosa was evaluated macro- and microscopically and stripped out for DNA assay. Data are reported as mean +/- SD or median [range] as appropriate. All animals lost weight but there was no difference between groups. Colon weight was significantly lower in the SCFA group (3.8 +/- 0.5 g) than in the control (5.3 +/- 2.1 g) and glucose (5.2 +/- 1.3 g) groups (P<0.05). Macroscopically, the severity of inflammation was less in SCFA (grade 2 [1-5]) than in control (grade 9 [4-10]) and glucose-treated (grade 9 [2-10]) animals (P<0.01). Microscopically, ulceration of the mucosa was more severe in the glucose and control groups than in the SCFA group. The DNA content of the mucosa of SCFA-treated animals (8.2 [5.0-20.2] mg/g of tissue) was higher than in glucose-treated (5.1 [4.2-8.5] mg/g of tissue; P<0.01) and control (6.2 [4.5-8.9] mg/g of tissue; P<0.05) animals. We conclude that SCFA may enhance mucosal re-epithelialization in experimental colitis, whereas hypertonic glucose is of no benefit.  (+info)