Associations between diet and the metabolic syndrome vary with the validity of dietary intake data. (73/519)

BACKGROUND: Underreporting is a common problem in dietary surveys. Few studies have shown the implication of this when investigating diet-disease relations. OBJECTIVE: We investigated how underreporting affects the associations between dietary factors and the metabolic syndrome. DESIGN: Dietary intake measured with a 7-d food record, fasting insulin concentrations, and other variables of the metabolic syndrome were assessed in a cross-sectional study of 301 healthy men aged 63 y. Biological markers for intakes of protein, sodium, and potassium were measured in 24-h urine samples. Underreporters (URs, n = 88) were identified by Goldberg's equation, which compares energy intake with energy expenditure, both expressed as multiples of the basal metabolic rate. Physical activity level was estimated, and individual cutoffs were calculated. RESULTS: The URs had higher nutrient and food densities in their diet than did the non-URs, which suggested that they followed a healthier diet. The URs had a higher prevalence of the metabolic syndrome than did the non-URs (18% and 9%, respectively; P = 0.029). The biological markers confirmed a low validity of the dietary data in the URs. The correlations between fasting insulin concentrations, a central component of the metabolic syndrome, and the intakes of polyunsaturated fats, n-6 fats, and fat from milk products were stronger in the URs than in the non-URs, which indicates that inaccurate data can introduce spurious associations. CONCLUSION: The association between diet and fasting insulin differed between URs and non-URs in this study of 301 healthy men aged 63 y. If URs are not identified and excluded or treated separately in studies in nutritional epidemiology, spurious diet-disease relations may be reported.  (+info)

Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. (74/519)

BACKGROUND: Polyunsaturated fatty acid intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, high intake of n-6 fatty acids may attenuate the known beneficial effects of n-3 fatty acids. METHODS AND RESULTS: We investigated habitual dietary n-3 fatty acid intake and its interaction with n-6 fatty acids in relation to the plasma inflammatory markers C-reactive protein, interleukin 6, and soluble tumor necrosis factor receptors 1 and 2 (sTNF-R1 and R2) among 405 healthy men and 454 healthy women. After adjustment for other predictors of inflammation, intake of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was inversely associated with plasma levels of sTNF-R1 and sTNF-R2 (P=0.03 and P<0.001, respectively) and somewhat less so for C-reactive protein (P=0.08). n-3 alpha-linolenic acid and n-6 cis-linoleic acid were not significantly related to the inflammatory markers. We found little if any association between n-3 fatty acid (EPA+DHA) intake and tumor necrosis factor receptors among participants with low intake of n-6 but a strong inverse association among those with high n-6 intake (P=0.04 and 0.002 for interaction of n-3 with n-6 on sTNF-R1 and sTNF-R2, respectively). CONCLUSIONS: These results suggest that n-6 fatty acids do not inhibit the antiinflammatory effects of n-3 fatty acids and that the combination of both types of fatty acids is associated with the lowest levels of inflammation. The inhibition of inflammatory cytokines may be one possible mechanism for the observed beneficial effects of these fatty acids on chronic inflammatory-related diseases.  (+info)

Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats. (75/519)

The present study demonstrated that an omega (n)-3 fatty acid, ethyl-eicosapentaenoic acid (ethyl-EPA), supplemented diet significantly attenuated the stress/anxiety behavior of rats in the "open field" and elevated plus maze, which was induced by subchronic intracerebroventricular administration of proinflammatory cytokine interleukin (IL)-1beta. Ethyl-EPA also reduced the rise in serum corticosterone induced by IL-1. The n-6 fatty acid ethyl-gamma-linolenic acid (ethyl-GLA) had little effect on the IL-1-induced changes in behavior and the corticosterone concentration. Following IL-1beta administration, ethyl-EPA reduced the elevated prostaglandin (PG) E2 secretion and increased the secretion of antiinflammatory cytokine IL-10 from whole blood cells. Ethyl-GLA showed a similar antiinflammatory effect to ethyl-EPA. By contrast, n-6 fatty acid arachidonic acid (AA) had no effect on the behavior, immune, and endocrine changes induced by IL-1. AA alone enhanced the basal inflammatory response, raised serum corticosterone concentrations, and induced anxiety behavior in the elevated plus maze. The reduced growth rates of rats following the administration of IL-1 was attenuated by ethyl-EPA, and to a greater extent by ethyl-EPA plus ethyl-GLA, but not by AA alone or in combination with ethyl-EPA. Thus, ethyl-EPA would appear to antagonise the endocrine, immune, and behavioral effects of subchronic IL-1 administration. Ethyl-GLA only antagonised IL-1-induced inflammatory changes, whereas AA caused an increase in the secretion of corticosterone and PGE2, and induced anxiety-like behavior without enhancing the effects of IL-1.  (+info)

Effect of supplementation of n-3 polyunsaturated fatty acids on oxidative stress-induced DNA damage of rat hepatocytes. (76/519)

The effect of supplementation of n-3 polyunsaturated fatty acids (PUFA) on oxidative stress-induced DNA damage of rat hepatocytes was examined. Male Wistar rats were fed a diet containing safflower oil (control n-6 PUFA diet) or fish oil (n-3 PUFA diet) in 50 g/kg of dried diet and an equal amount of vitamin E in 59 mg/kg of dried diet for 6 weeks. The liver of rats fed safflower oil was rich in n-6 PUFA, whereas that of rats fed fish oil was rich in n-3 PUFA. Isolated hepatocytes were treated in vitro with ADP/Fe (II) ion or hydrogen peroxide at 37 degrees C for 30 min to induce oxidative stress. The degree of lipid peroxidation was assessed by the levels of phospholipid hydroperoxides and thiobarbituric acid-reactive substances. The degree of oxidative DNA damage was assessed based on comet-type characterization in alkaline single-cell gel electrophoresis and 8-hydroxy-deoxyguanosine levels. In both ADP/Fe(II) ion and hydrogen peroxide oxidation, the degree of lipid peroxidation of hepatocytes increased in both diet groups, and the level of increase in the fish oil diet group was slightly higher than that in the safflower oil diet group. In ADP/Fe(II) ion oxidation, the degree of DNA damage increased in both diet groups, but there were no significant differences in the level of increase. In contrast, in hydrogen peroxide oxidation, the degree of DNA damage increased in both diet, and the increase in the fish oil diet group was significantly lower than that in the safflower oil diet group. It is unlikely that an n-3 PUFA-rich diet enhances oxidative stress-induced hepatocyte DNA damage as compared with the control n-6 PUFA-rich diet.  (+info)

Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and omega-6 fatty acids. (77/519)

Rats were fed, for 3 weeks, high-fat (20% w/w) diets containing sunflower-seed oil, linseed oil or fish oil. Chow-fed rats were used as a low-fat reference. The high-fat diets markedly reduced non-fasting-rat serum triacylglycerol as compared with the low-fat reference, and the highest reduction (85%) was observed with the fish-oil group, which was significantly lower than that of the other high-fat diets. The serum concentration of phospholipids was significantly reduced (30%) only in the fish-oil-fed animals, whereas serum non-esterified fatty acids were reduced 40-50% by both the fish-oil- and linseed-oil-fed groups. The liver content of triacylglycerol showed a 1.7-fold increase with the fish-oil diet and 2-2.5-fold with the other dietary groups when compared with rats fed a low-fat diet, whereas the hepatic content of phospholipids was unchanged. Peroxisomal fatty acid oxidation (acyl-CoA oxidase) was 2-fold increased for the rats fed fish oil; however this was not significantly higher when comparison was made with rats fed the linseed-oil diet. There was no difference in phosphatidate hydrolysis (microsomal and cytosolic fractions) among animals fed the various diets. Acyl-CoA:diacylglycerol acyltransferase activity was increased by all high-fat diets, but the fish-oil-diet-fed group showed a significantly lower enzyme activity than did rats fed the other high-fat diets. A linear correlation between acyl-CoA:diacylglycerol acyltransferase activity and liver triacylglycerol was observed, and the microsomal enzyme activity was decreased 40-50% by incubation in the presence of eicosapentaenoyl-CoA. CoA derivatives of arachidonic, linolenic and linoleic acid had no inhibitory effect when compared with the control. These results indicate that dietary fish oil may have greater triacylglycerol-lowering effect than other polyunsaturated diets, owing to decreased triacylglycerol synthesis caused by inhibition of acyl-CoA:diacylglycerol acyltransferase. In addition, increased peroxisomal fatty acid oxidation and decreased availability of non-esterified fatty acids could also contribute by decreasing the amounts of fatty acids as substrates for triacylglycerol synthesis and secretion.  (+info)

Dietary alpha-linolenic acid reduces COX-2 expression and induces apoptosis of hepatoma cells. (78/519)

Fatty acid synthetase (FAS) is overexpressed in various tumor tissues, and its inhibition and/or malonyl-CoA accumulation have been correlated to apoptosis of tumor cells. It is widely recognized that both omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) depress FAS expression in liver, although epidemiological and experimental reports attribute antitumor properties only to omega-3 PUFA. Therefore, we investigated whether lipogenic gene expression in tumor cells is differently regulated by omega-6 and omega-3 PUFAs. Morris hepatoma 3924A cells were implanted subcutaneously in the hind legs of ACI/T rats preconditioned with high-lipid diets enriched with linoleic acid or alpha-linolenic acid. Both-high lipid diets depressed the expression of FAS and acetyl-CoA carboxylase in tumor tissue, this effect correlating with a decrease in the mRNA level of their common sterol regulatory element binding protein-1 transcription factor. Hepatoma cells grown in rats on either diet did not accumulate malonyl-CoA. Apoptosis of hepatoma cells was induced by the alpha-linolenic acid-enriched diet but not by the linoleic acid-enriched diet. Therefore, in this experimental model, apoptosis is apparently independent of the inhibition of fatty acid synthesis and of malonyl-CoA cytotoxicity. Conversely, it was observed that apoptosis induced by the alpha-linolenic acid-enriched diet correlated with a decrease in arachidonate content in hepatoma cells and decreased cyclooxygenase-2 expression.  (+info)

Short-time infusion of fish oil-based lipid emulsions, approved for parenteral nutrition, reduces monocyte proinflammatory cytokine generation and adhesive interaction with endothelium in humans. (79/519)

Potential impact of omega-3 fatty acids, as contained in fish oil, on immunological function has been suggested because observations of reduced inflammatory diseases in Greenland Inuit were published. A fish oil-based lipid emulsion has recently been approved for parenteral nutrition in many countries. We investigated the influence of a short infusion course of fish oil-based (omega-3) vs conventional (omega-6) lipid emulsion on monocyte function. In a randomized design, twelve healthy volunteers received omega-3 or omega-6 lipid infusion for 48 h, with cross-over repetition of the infusion course after 3 mo. Fatty acid profiles, monocyte cytokine release and adhesive monocyte-endothelium interaction were investigated. Resultant omega-6 lipid emulsion increased plasma-free fatty acids including arachidonic acid, whereas the omega-3/omega-6 fatty acid ratio in monocyte membranes remained largely unchanged. It also caused a tendency toward enhanced monocyte proinflammatory cytokine release and adhesive monocyte-endothelium interaction. In contrast, omega-3 lipid emulsion significantly increased the omega-3/omega-6 fatty acid ratio in the plasma-free fatty acid fraction and in monocyte membrane lipid pool, markedly suppressing monocyte generation of TNF-alpha, IL-1, IL-6, and IL-8 in response to endotoxin. In addition, it also significantly inhibited both monocyte-endothelium adhesion and transendothelial monocyte migration, although monocyte surface expression of relevant adhesive molecules (CD11b, CD18, CD49 days, CCR2) was unchanged. Although isocaloric, omega-3 and omega-6 lipid emulsions exert differential impact on immunological processes in humans. In addition to its nutritional value, fish oil-based omega-3 lipid emulsion significantly suppresses monocyte proinflammatory cytokine generation and features of monocyte recruitment.  (+info)

Diacylglycerols containing Omega 3 and Omega 6 fatty acids bind to RasGRP and modulate MAP kinase activation. (80/519)

We elucidated the effects of different diacylglycerols (DAGs), i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG), 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG), and 1-stearoyl-2-eicosapentaenoyl-sn-glycerol (SEG), on [3H]PDBu binding to RasGRP. The competition studies with these DAGs on [3H]PDBu binding to RasGRP revealed different Ki values for these DAG molecular species. Furthermore, we transfected human Jurkat T cells by a plasmid containing RasGRP and assessed the implication of endogenous DAGs on activation of MAP kinases ERK1/ERK2, induced by phorbol-12-myristate-13-acetate (PMA). In control cells, GF109203X, a protein kinase C inhibitor, inhibited ERK1/ERK2 activation. However, this agent curtailed but failed to completely diminish ERK1/ERK2 phosphorylation in RasGRP-overexpressing cells, though calphostin C, a DAG binding inhibitor, suppressed the phosphorylation of MAP kinases in these cells. In cells incubated with arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), PMA induced the production of endogenous DAGs containing these fatty acids, respectively: DAG-AA, DAG-DHA, and DAG-EPA. The inhibition of production of DAG-AA and DAG-DHA significantly inhibited MAP kinase activation in RasGRP overexpressing, but not in control, cells. Our study demonstrates that three DAG molecular species bind to RasGRP, but only DAG-AA and DAG-DHA participate in the modulation of RasGRP-mediated activation of MAP kinases in Jurkat T cells.  (+info)