(1/477) Delay of preterm delivery in sheep by omega-3 long-chain polyunsaturates.

A positive correlation has been shown between dietary intake of long-chain omega-3 fatty acids in late pregnancy and gestation length in pregnant women and experimental animals. To determine whether omega-3 fatty acids have an effect on preterm labor in sheep, a fish oil concentrate emulsion was continuously infused to six pregnant ewes from 124 days gestational age. At 125 days, betamethasone was administered to the fetus to produce preterm labor. Both the onset of labor and the time of delivery were delayed by the fish oil emulsion. Two of the omega-3-infused ewes reverted from contractions to nonlabor, an effect never previously observed for experimental glucocorticoid-induced preterm labor in sheep. Maternal plasma estradiol and maternal and fetal prostaglandin E2 rose in control ewes but not in those infused with omega-3 fatty acid. The ability of omega-3 fatty acids to delay premature delivery in sheep indicates their possible use as tocolytics in humans. Premature labor is the major cause of neonatal death and long-term disability, and these studies present information that may lead to a novel therapeutic regimen for the prevention of preterm delivery in human pregnancy.  (+info)

(2/477) Prolonged elevation of plasma free fatty acids desensitizes the insulin secretory response to glucose in vivo in rats.

Prolonged exposure of pancreatic islets to free fatty acids (FFAs) inhibits glucose-stimulated insulin secretion (GSIS) in vitro. However, FFA inhibition of GSIS has not been clearly demonstrated in vivo. We examined the in vivo effect of prolonged elevation of plasma FFAs on GSIS using a two-step hyperglycemic clamp in rats treated with a 48-h intravenous infusion of either 20% Intralipid plus heparin (INT) (5 microl/min plus heparin, 0.1 U/min; n = 8), oleate (OLE) (1.3 microEq/min; n = 6), saline (SAL) (n = 6), or bovine serum albumin (BSA) (vehicle for OLE; n = 5). Because there was no difference in any of the parameters between BSA and SAL rats, these groups were combined as control rats (CONT) (n = 11). At the end of the 48-h OLE/INT/CONT infusions, after an overnight fast, plasma glucose was clamped for 2 h at 13 mmol/l and for another 2 h at 22 mmol/l. Preclamp plasma FFAs were elevated twofold (P < 0.01) versus CONT with both INT and OLE (NS, INT vs. OLE). Preclamp glucose, insulin, and C-peptide levels were higher in INT than in CONT rats (P < 0.05), suggesting insulin resistance, but they were not different in OLE and CONT rats. The insulin and C-peptide responses to the rise in plasma glucose from basal to 13 mmol/l were lower in OLE (336 +/- 72 pmol/l and 1.2 +/- 0.1 nmol/l, P < 0.01 and P < 0.05, respectively) than in CONT (552 +/- 54 and 1.9 +/- 0.1) rats, but they were not different between CONT and INT rats (648 +/- 150 and 2.0 +/- 0.4). The insulin and C-peptide responses to the rise in plasma glucose from 13 to 22 mmol/l were lower in both INT (1,188 +/- 204 pmol/l and 3.0 +/- 0.3 nmol/l, P < 0.01 and P < 0.001) and OLE (432 +/- 60 and 1.7 +/- 0.2, P < 0.001 vs. CONT or INT) rats than in CONT rats (1,662 +/- 174 and 5.0 +/- 0.6). In summary, 1) both INT and OLE decreased GSIS in vivo in rats, and 2) the impairing effect of INT on GSIS was less than that of OLE, which might be due to the different type of fatty acid (mostly polyunsaturated in INT versus monounsaturated as OLE) and/or to differential effects of INT and OLE on insulin sensitivity. In conclusion, prolonged elevation of plasma FFAs can desensitize the insulin secretory response to glucose in vivo, thus inducing a beta-cell defect that is similar to that found in type 2 diabetes.  (+info)

(3/477) Effects of fatty acids and ketone bodies on basal insulin secretion in type 2 diabetes.

The objective of this study was to assess the role of free fatty acids (FFAs) as insulin secretagogues in patients with type 2 diabetes. To this end, basal insulin secretion rates (ISR) in response to acute increases in plasma FFAs were evaluated in patients with type 2 diabetes and in age- and weight-matched nondiabetic control subjects during 1) intravenous infusion of lipid plus heparin (L/H), which stimulated intravascular lipolysis, and 2) the FFA rebound, which followed lowering of plasma FFAs with nicotinic acid (NA) and was a consequence of increased lipolysis from the subject's own adipose tissue. At comparable euglycemia, diabetic patients had similar ISR but higher plasma beta-hydroxybutyrate (beta-OHB) levels during L/H infusion and higher plasma FFA and beta-OHB levels during the FFA rebound than nondiabetic control subjects. Correlating ISR with plasma FFA plus beta-OHB levels showed that in response to the same changes in FFA plus beta-OHB levels, diabetic patients secreted approximately 30% less insulin than nondiabetic control subjects. In addition, twice as much insulin was secreted during L/H infusion as during the FFA rebound in response to the same FFA/beta-OHB stimulation by both diabetic patients and control subjects. Glycerol, which was present in the infused lipid (272 mmol/l) did not affect ISR. We concluded that 1) assessment of FFA effects on ISR requires consideration of effects on ISR by ketone bodies; 2) ISR responses to FFA/beta-OHB were defective in patients with type 2 diabetes (partial beta-cell lipid blindness), but this defect was compensated by elevated plasma levels of FFAs and ketone bodies; and 3) approximately two times more insulin was released per unit change in plasma FFA plus beta-OHB during L/H infusion than during the FFA rebound after NA. The reason for this remains to be explored.  (+info)

(4/477) Free fatty acids impair hepatic insulin extraction in vivo.

Hyperinsulinemia is a common finding in obesity and results from insulin hypersecretion and impaired hepatic insulin extraction. In vitro studies have shown that free fatty acids (FFAs), which are often elevated in obesity, can impair insulin binding and degradation in isolated rat hepatocytes. To investigate whether FFAs impair hepatic insulin extraction (E(H)) in vivo, either saline (SAL) or 10% Intralipid (0.03 ml x kg(-1) x min(-1)) plus heparin (0.44 U x kg(-1) x min(-1)) (IH) was infused into normal dogs to elevate FFA levels. Insulin was infused intraportally at 18 pmol x kg(-1) x min(-1) for 150 min (period A, high insulin dose), and then at 2.4 pmol x kg(-1) x min(-1) for another 150 min (period B, low insulin dose). After the low portal insulin dose, additional insulin was infused peripherally at 8.4 pmol x kg(-1) x min(-1) for 120 min (period C) to assess the clearance of insulin from the peripheral plasma. In 16 paired experiments, FFA levels were 1,085 +/- 167, 1,491 +/- 240, 1,159 +/- 221 micromol/l (IH) and 221 +/- 44, 329 +/- 72, 176 +/- 44 micromol/l (SAL) in periods A, B, and C, respectively. Peripheral insulin levels were greater with IH (P < 0.001) than with SAL in all periods (1,620 +/- 114, 126 +/- 12, 1,050 +/- 72 pmol/l for IH vs. 1,344 +/- 168, 96 +/- 4.2, 882 +/- 60 pmol/l for SAL). Glucose clearance was impaired by IH in all periods (P < 0.05), whereas glucose production was slightly increased by IH during period B. Peripheral insulin clearance (Cl) and E(H) were calculated from the insulin infusion rate and insulin concentration data in each period by taking into account the nonlinearity of insulin kinetics. Cl was lower (P < 0.01) with IH (9.6 +/- 0.6, 12.0 +/- 0.9, 10.2 +/- 0.6 ml x kg(-1) x min(-1)) than with SAL (11.2 +/- 1, 13.6 +/- 0.7, 11.9 +/- 0.9 ml x kg(-1) x min(-1)) in periods A, B, and C. E(H) was also lower (P < 0.05) with IH (25 +/- 4, 40 +/- 5, 32 +/- 5%) than with SAL (30 +/- 2.8, 47 +/- 3, 38 +/- 3%). We conclude that FFAs can impair hepatic insulin extraction in vivo at high and low insulin levels, an effect that may contribute to the peripheral hyperinsulinemia of obesity.  (+info)

(5/477) Evidence for a lipid specific effect in nutrient induced human proximal gastric relaxation.

BACKGROUND/AIM: The presence of lipid in the upper gut is able to modify gastrointestinal motor performance, but its influence on the relaxation of the human stomach, which is known to modify gastric emptying, remains incompletely understood. The relaxation of the proximal stomach in response to various lipid concentrations was therefore studied in healthy volunteers. Since the observed effects could be mediated through osmolality or energy sensitive pathways, the effects of equicaloric and equiosmolar non-lipid solutions were also determined. METHODS: The tone of the proximal stomach was measured during stepwise inflation of a non-compliant bag sited in the proximal stomach, both before and after a test meal was delivered intragastrically. Iso-osmolar lipid emulsions were diluted in iso-osmolar saline at concentrations of 1.25, 2.5, 5, 10, and 20%. NaCl solutions at osmolalities of 300, 600, 1200 and 2400 mmol/kg and glucose solutions of 836 and 3344 kJ/l were also given. RESULTS: All lipid meals of 2.5% or greater concentration induced a reduction in gastric tone in a non-dose-dependent manner, responses to 5% lipid (median (range) 74 (62-92)%) being similar to those to 20% lipid (80 (55-83)%; p > 0.05). No relaxation was elicited by isocaloric glucose. NaCl only consistently caused relaxation at 2400 mmol/kg. CONCLUSION: Lipid meals reduce human proximal gastric tone by a lipid specific mechanism, independently of their energy content or osmolality.  (+info)

(6/477) Amphotericin B in children with malignant disease: a comparison of the toxicities and pharmacokinetics of amphotericin B administered in dextrose versus lipid emulsion.

In a prospective, randomized clinical trial, the toxicity of 1 mg of amphotericin B (AmB) per kg of body weight per day infused in 5% dextrose was compared with that of AmB infused in lipid emulsion in children with malignant disease. In an analysis of 82 children who received a full course of 6 days or more of AmB (117 courses), it was shown that there were significant increases in plasma urea and creatinine concentrations and in potassium requirement after 6 days of therapy with both AmB infused in dextrose and AmB infused in lipid emulsion, with there being no difference between the two methods of AmB administration. An intent-to-treat comparison of the numbers of courses affected by acute toxicity (fever, rigors) and chronic toxicity (nephrotoxicity) also indicated that there was no significant difference between AmB infused in dextrose (78 courses) and AmB infused in lipid emulsion (84 courses). The pharmacokinetics of AmB were investigated in 20 children who received AmB in dextrose and 15 children who received AmB in lipid emulsion. Blood samples were collected up to 24 h after administration of the first dose, and the concentration of AmB in plasma was analyzed by a high-performance liquid chromatography assay. The clearance (CL) of AmB in dextrose (0.039 +/- 0.016 liter. h-1. kg-1) was significantly lower (P < 0.005) than the CL of AmB in lipid emulsion (0.062 +/- 0. 024 liter. h-1. kg-1). The steady-state volume of distribution for AmB in dextrose (0.83 +/- 0.33 liter. kg-1) was also significantly lower (P < 0.005) than that for AmB in lipid emulsion (1.47 +/- 0.77 liter. kg-1). Although AmB in lipid emulsion is apparently cleared faster and distributes more widely than AmB in dextrose, this study did not reveal any significant advantage with respect to safety and tolerance in the administration of AmB in lipid emulsion compared to its administration in dextrose in children with malignant disease.  (+info)

(7/477) Comparison of the toxicity of amphotericin B in 5% dextrose with that of amphotericin B in fat emulsion in a randomized trial with cancer patients.

A multicentric randomized trial was undertaken to compare the toxicity of amphotericin B in 5% dextrose with that of amphotericin B in a fat emulsion (Intralipid) in cancer patients. Group 1 (n = 33) received amphotericin B diluted in 5% dextrose with premedication consisting of promethazine plus an antipyretic. Group 2 (n = 28) received amphotericin B diluted in 20% Intralipid without premedication. Amphotericin B was infused daily at a dose of 1 mg/kg of body weight over a 1-h period to members of both groups for empirical antifungal therapy (in neutropenic patients) or for the treatment of documented fungal infections. The majority of patients (80%) received empirical amphotericin B treatment. The two groups were comparable with regard to age, gender, underlying disease, and the following baseline characteristics: use of other nephrotoxic drugs and serum levels of potassium and creatinine. The median cumulative doses of amphotericin B were 240 mg in group 1 and 245 mg in group 2 (P = 0.73). Acute adverse events occurred in 88% of patients in group 1 and in 71% of those in group 2 (P = 0.11). Forty percent of the infusions in group 1 were associated with fever, compared to 23% in group 2 (P < 0.0001). In addition, patients in group 2 required less meperidine for the control of acute adverse events (P = 0.008), and fewer members of this group presented with hypokalemia (P = 0.004) or rigors (P < 0.0001). There was no difference in the proportions of patients with nephrotoxicity (P = 0.44). The success rates of empirical antifungal treatment were similar in the two groups (P = 0.9). Amphotericin B diluted in a lipid emulsion seems to be associated with a smaller number of acute adverse events and fewer cases of hypokalemia than amphotericin B diluted in 5% dextrose.  (+info)

(8/477) Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation.

The in vivo effect of elevated free fatty acids (FFA) on beta-cell function in humans remains extremely controversial. We examined, in healthy young men, the acute (90 min) and chronic (48 h) effects of an approximately twofold elevation of plasma FFA vs. control on glucose-stimulated insulin secretion (GSIS). GSIS was studied in response to a graded intravenous glucose infusion (peak plasma glucose, approximately 10 mmol/l, n = 8) and a two-step hyperglycemic clamp (10 and 20 mmol/l, n = 8). In the acute studies, GSIS was significantly higher, insulin sensitivity index (SI) was lower, and disposition index (DI = insulin sensitivity x insulin secretion) was unchanged with elevated FFA vs. control [2-step clamp: DI = 8.9 +/- 1.4 x 10(-3) l2. kg-1. min-2 in control vs. 10.0 +/- 1.9 x 10(-3) l2. kg-1. min-2 with high FFA, P = nonsignificant (NS)]. In the chronic studies, there was no difference in absolute GSIS between control and high FFA studies, but there was a reduction in SI and a loss of the expected compensatory increase in insulin secretion as assessed by the DI (2-step clamp: DI = 10.0 +/- 1.2 x 10(-3) l2. kg-1. min-2 in control vs. 6.1 +/- 0.7 x 10(-3) l2. kg-1. min-2 with high FFA, P = 0.01). In summary, 1) acute and chronic FFA elevation induces insulin resistance; 2) with acute FFA elevation, this insulin resistance is precisely countered by an FFA-induced increase in insulin secretion, such that DI does not change; and 3) chronic FFA elevation disables this beta-cell compensation.  (+info)