Loading...
(1/492) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB.

Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  (+info)

(2/492) Human geranylgeranyl diphosphate synthase. cDNA cloning and expression.

Geranylgeranyl diphosphate (GGPP) synthase (GGPPSase) catalyzes the synthesis of GGPP, which is an important molecule responsible for the C20-prenylated protein biosynthesis and for the regulation of a nuclear hormone receptor (LXR.RXR). The human GGPPSase cDNA encodes a protein of 300 amino acids which shows 16% sequence identity with the known human farnesyl diphosphate (FPP) synthase (FPPSase). The GGPPSase expressed in Escherichia coli catalyzes the GGPP formation (240 nmol/min/mg) from FPP and isopentenyl diphosphate. The human GGPPSase behaves as an oligomeric molecule with 280 kDa on a gel filtration column and cross-reacts with an antibody directed against bovine brain GGPPSase, which differs immunochemically from bovine brain FPPSase. Northern blot analysis indicates the presence of two forms of the mRNA.  (+info)

(3/492) RAS and leukemia: from basic mechanisms to gene-directed therapy.

PURPOSE AND DESIGN: The purpose of this review is to provide an overview of the literature linking Ras signaling pathways and leukemia and to discuss the biologic and potential therapeutic implications of these observations. A search of MEDLINE from 1966 to October 1998 was performed. RESULTS: A wealth of data has been published on the role of Ras pathways in cancer. To be biologically active, Ras must move from the cytoplasm to the plasma membrane. Importantly, a posttranslational modification--addition of a farnesyl group to the Ras C-terminal cysteine--is a requisite for membrane localization of Ras. Farnesylation of Ras is catalyzed by an enzyme that is designated farnesyltransferase. Recently, several compounds have been developed that can inhibit farnesylation. Preclinical studies indicate that these molecules can suppress transformation and tumor growth in vitro and in animal models, with little toxicity to normal cells. CONCLUSION: An increasing body of data suggests that disruption of Ras signaling pathways, either directly through mutations or indirectly through other genetic aberrations, is important in the pathogenesis of a wide variety of cancers. Molecules such as farnesyl transferase inhibitors that interfere with the function of Ras may be exploitable in leukemia (as well as in solid tumors) as novel antitumor agents.  (+info)

(4/492) Identification of the GGPS1 genes encoding geranylgeranyl diphosphate synthases from mouse and human.

E,E,E-Geranylgeranyl diphosphate (GGPP) is an important precursor of carotenoids and geranylgeranylated proteins such as small G proteins. In this study, we have identified mouse and human GGPP synthase genes. Sequence analysis showed that mouse and human GGPP synthases share a high level of amino acid identity (94%) with each other, and share a high level of similarity (45-50%) with GGPP synthases of lower eukaryotes, but only weak similarity (22-31%) to plant and prokaryotic GGPP synthases. Both of the newly identified GGPP synthase genes from mouse and human were expressed in Escherichia coli, and their gene products displayed GGPP synthase activity when isopentenyl diphosphate and farnesyl diphosphate were used as substrates. The GGPP synthase activity of these genes was also confirmed by demonstrating carotenoid synthesis after co-transformation of E. coli with a plasmid expressing the crt genes derived from Erwinia uredovora, and a plasmid expressing either the mouse or human GGPS1 gene. Southern blot analysis suggests that the human GGPS1 gene is a single copy gene.  (+info)

(5/492) Gene cloning and overexpression of a geranylgeranyl diphosphate synthase of an extremely thermophilic bacterium, Thermus thermophilus.

A geranylgeranyl diphosphate (GGPP) synthase gene of an extremely thermophilic bacterium, Thermus thermophilus, was cloned and sequenced. T. thermophilus GGPP synthase, overexpressed in Escherichia coli cells as a glutathione S-transferase fusion protein, was purified and characterized. The fusion protein, retaining thermostability, formed a homodimer, and showed higher specific activity than did a partially purified thermostable enzyme previously reported. Optimal reaction conditions and kinetic parameters were also examined. The deduced amino acid sequence indicated that T. thermophilus GGPP synthase was excluded from the group of bacterial type GGPP synthases and lacked the insertion amino acid residues in the first aspartate-rich motif as do archaeal and eukaryotic short-chain prenyltransferases.  (+info)

(6/492) Elevation of alpha2(I) collagen, a suppressor of Ras transformation, is required for stable phenotypic reversion by farnesyltransferase inhibitors.

Farnesyltransferase inhibitors (FTIs) are a novel class of anticancer drugs that can reverse Ras transformation. One of the intriguing aspects of FTI biology is that continuous drug exposure is not necessary to maintain phenotypic reversion. For example, after a single exposure to FTIs, Ha-Ras-transformed fibroblasts revert to a flat and anchorage-dependent phenotype that persists for many days after processed Ras has returned to pretreatment levels. In this study, we show that persistence of the reverted state is mediated by elevated expression of the collagen isoform alpha2(I), a suppressor of Ras transformation the transcription of which is repressed by activated Ras and derepressed by FTI treatment. To our knowledge, this is the first report identifying an FTI-regulated gene which is linked to phenotypic reversion. The finding that extracellular matrix alterations can influence the kinetics of reversion supports our assertion that Rho-regulated cell adhesion parameters are a crucial determinant of the cellular response to FTIs.  (+info)

(7/492) High-level expression, purification, kinetic characterization and crystallization of protein farnesyltransferase beta-subunit C-terminal mutants.

Protein farnesyltransferase (FPT) is a 97 000 Da heterodimeric enzyme that catalyzes post-translational farnesylation of many cellular regulatory proteins including p21 Ras. To facilitate the construction of site-directed mutants, a novel translationally coupled, two-cistron Escherichia coli expression system for rat FPT has been developed. This expression system enabled yields of >5 mg of purified protein per liter of E.coli culture to be obtained. The E.coli-derived FPT demonstrated an activity comparable to that of protein isolated from other sources. The reported expression system was used to construct three beta-subunit C-terminal truncation mutants, Delta5, Delta10 and Delta14, which were designed to eliminate a lattice interaction between the beta-subunit C-terminus of one molecule and the active site of a symmetry-related molecule. Steady-state kinetic analyses of these mutants showed that deletion up to 14 residues at the C-terminus did not reduce the value of kcat; however, Km values for both peptide and FPP increased 2-3-fold. A new crystalline form of FPT was obtained for the Delta10 C-terminal mutant grown in the presence of the substrate analogs acetyl-Cys-Val-Ile-Met-COOH peptide and alpha-hydroxyfarnesylphosphonic acid. The crystals diffract to beyond 2.0 A resolution. The refined structure clearly shows that both substrate analogs adopt extended conformations within the FPT active site cavity.  (+info)

(8/492) Carcinogen and dietary lipid regulate ras expression and localization in rat colon without affecting farnesylation kinetics.

Epidemiological and experimental data suggest that dietary fiber and fat are major determinants of colorectal cancer. However, the mechanisms by which these dietary constituents alter the incidence of colon cancer have not been elucidated. Evidence indicates that dominant gain-of-function mutations short-circuit protooncogenes and contribute to the pathogenesis of cancer. Therefore, we began to dissect the mechanisms whereby dietary fat and fiber, fed during the initiation, promotion and progression stages of colon tumorigenesis, regulate ras p21 localization, expression and mutation frequency. Male Sprague-Dawley rats (140) were provided with corn oil or fish oil and pectin or cellulose plus or minus the carcinogen azoxymethane (AOM) in a 2 x 2 x 2 factorial design and killed after 34 weeks. We have previously shown adenocarcinoma incidence in these animals to be 70.3% (52/74) for corn oil + AOM and 56.1% (37/66) for fish oil + AOM (P < 0.05). Total ras expression as well as ras membrane:cytosol ratio was 4- to 6-fold higher in colon tumors than in mucosa from AOM- or saline-injected rats. Expression of ras in the mucosal membrane fraction was 13% higher for animals fed corn oil compared with fish oil feeding (P < 0.05), which is noteworthy since ras must be localized at the plasma membrane to function. The elevated ras membrane:cytosol ratio in tumors was not due to increased farnesyl protein transferase activity or prenylation state, as nearly all detectable ras was in the prenylated form. Phosphorylated p42 and p44 mitogen activated protein kinase (ERK) expression was two-fold higher in tumor extracts compared with uninvolved mucosa from AOM- and saline-injected rats (P < 0.05). The frequency of K-ras mutations was not significantly different between the various groups, but there was a trend toward a greater incidence of mutations in tumors from corn oil fed rats (85%) compared with fish oil fed rats (58%). Our results indicate that the carcinogen-induced changes in ras expression and membrane localization are associated with the in vivo activation of the ERK pathway. In addition, suppression of tumor development by dietary n-3 polyunsaturated fatty acids may be partly due to a combined effect on colonic ras expression, membrane localization, and mutation frequency.  (+info)