Dimer dissociation and unfolding mechanism of coagulation factor XI apple 4 domain: spectroscopic and mutational analysis. (57/216)

The blood coagulation protein factor XI (FXI) consists of a pair of disulfide-linked chains each containing four apple domains and a catalytic domain. The apple 4 domain (A4; F272-E362) mediates non-covalent homodimer formation even when the cysteine involved in an intersubunit disulfide is mutated to serine (C321S). To understand the role of non-covalent interactions stabilizing the FXI dimer, equilibrium unfolding of wild-type A4 and its C321S variant was monitored by circular dichroism, intrinsic tyrosine fluorescence and dynamic light scattering measurements as a function of guanidine hydrochloride concentration. Global analysis of the unimolecular unfolding transition of wild-type A4 revealed a partially unfolded equilibrium intermediate at low to moderate denaturant concentrations. The optically detected equilibrium of C321S A4 also fits best to a three-state model in which the native dimer unfolds via a monomeric intermediate state. Dimer dissociation is characterized by a dissociation constant, K(d), of approximately 90 nM (in terms of monomer), which is in agreement with the dissociation constant measured independently using fluorescence anisotropy. The results imply that FXI folding occurs via a monomeric equilibrium intermediate. This observation sheds light on the effect of certain naturally occurring mutations, such as F283L, which lead to intracellular accumulation of non-native forms of FXI. To investigate the structural and energetic consequences of the F283L mutation, which perturbs a cluster of aromatic side-chains within the core of the A4 monomer, it was introduced into the dissociable dimer, C321S A4. NMR chemical shift analysis confirmed that the mutant can assume a native-like dimeric structure. However, equilibrium unfolding measurements show that the mutation causes a fourfold increase in the K(d) value for dissociation of the native dimer and a 1 kcal/mol stabilization of the monomer, resulting in a highly populated intermediate. Since the F283 side-chain does not directly participate in the dimer interface, we propose that the F283L mutation leads to increased dimer dissociation by stabilizing a monomeric state with altered side-chain packing that is unfavorable for homodimer formation.  (+info)

Fine mapping of the high molecular weight kininogen binding site on blood coagulation factor XI through the use of rationally designed synthetic analogs. (58/216)

Using immunological and chemical cleavage techniques, we have previously identified a domain contained within residues Phe56-Ser86 in the first tandem repeat (A1) of the heavy chain of factor XI which binds high Mr kininogen (Baglia, F. A., Jameson, B. A., and Walsh, P. N. (1990) J. Biol. Chem. 265, 4149-4154). We have now chemically synthesized peptides from corresponding homologous regions in the second (A2), third (A3), and fourth (A4) tandem repeats of the heavy chain (A2: Asn145-Ala176; A3: Asn235-Arg266; and A4: Gly326-Lys357). These peptides had no effect on the binding of factor XI to high Mr kininogen. Because of a lack of detailed structural information for the A1 domain, a molecular model of this region was constructed. This hypothetical model made distinct and testable predictions regarding potential surfaces and concomitant secondary structure. Specifically, the resulting structure depicted two juxtaposed beta-stranded stem-loops that, in conjunction with biological information, constitute a candidate surface for contact with high Mr kininogen. The hypothetical A1 model was, consequently, used as a predictive template in the rational design of two synthetic peptides (Val59-Arg70 and Asn72-Lys83). When both these peptides were added together and the binding of factor XI to high Mr kininogen was examined, a synergistic inhibitory effect was observed compared with each peptide added individually. Our data are consistent with the notion that the sequence of amino acids from Val59-Lys83 of the heavy chain of factor XI contains two antiparallel beta-strands connected by beta-turns that together comprise a continuous surface utilized for the binding of high Mr kininogen.  (+info)

Feedback activation of factor XI by thrombin does not occur in plasma. (59/216)

In this study, we tested the hypothesis that factor XI (FXI) activation occurs in plasma following activation of the extrinsic pathway by thrombin-mediated feedback activation. We used two different assays: (i) a direct measurement of activated FXI by ELISA and (ii) a functional assay that follows the activation of the coagulation cascade in the presence or absence of a FXI inhibiting antibody by monitoring thrombin activity. We failed to detect any FXI activation or functional contribution to the activation of the coagulation cascade in platelet poor or platelet-rich plasma, when activation was initiated by thrombin or tissue factor. Additionally, we found that, in the absence of a contact system inhibitor during blood draw, contact activation of FXI can mistakenly appear as thrombin- or tissue-factor-dependent activation. Thus, activation of FXI by thrombin in solution or on the surface of activated platelets does not appear to play a significant role in a plasma environment. These results call for reevaluation of the physiological role of the contact activation system in blood coagulation.  (+info)

Factor XI/ADAMTS13 complexes are quantitatively insignificant in human plasma. (60/216)

Reportedly, complexes between factor XI and ADAMTS13 are detected with a commercial ADAMTS13/FXI ELISA kit in plasma and are decreased in thrombotic thrombocytopenic purpura (TTP). Using this kit, control and TTP patient plasma contained varying amounts of signal (25-670% of a reference plasma) but no signal was observed for mixtures of recombinant enzymes, suggesting little interaction. ADAMTS13/FXI complexes were undetectable by immunoprecipitation or gel filtration chromatography in control plasma or mixtures of recombinant proteins. These results suggest that ADAMTS13/FXI complexes are insignificant in plasma and unlikely to affect the function of either protein during normal hemostasis or in TTP.  (+info)

Solution structure of the A4 domain of factor XI sheds light on the mechanism of zymogen activation. (61/216)

Factor XI (FXI) is a homodimeric blood coagulation protein. Each monomer comprises four tandem apple-domain repeats (A1-A4) and a serine protease domain. We report here the NMR solution structure of the A4 domain (residues 272-361), which mediates formation of the disulfide-linked FXI dimer. A4 exhibits characteristic features of the plasminogen apple nematode domain family, including a five-stranded beta-sheet flanked by an alpha-helix on one side and a two-stranded beta-sheet on the other. In addition, the solution structure reveals a second alpha-helix at the C terminus. Comparison with a recent crystal structure of full-length FXI, combined with molecular modeling, suggests that the C-terminal helix is formed only upon proteolytic activation. The newly formed helix disrupts interdomain contacts and reorients the catalytic domains, bringing the active sites into close proximity. This hypothesis is supported by small-angle x-ray scattering and electron microscopy data, which indicate that FXI activation is accompanied by a major change in shape. The results are consistent with biochemical evidence that activated FXI cleaves its substrate at two positions without release of an intermediate.  (+info)

Intrinsic pathway of coagulation and arterial thrombosis. (62/216)

Formation of a fibrin clot is mediated by a group of tightly regulated plasma proteases and cofactors. While this system is essential for minimizing blood loss from an injured blood vessel (hemostasis), it also contributes to pathologic fibrin formation and platelet activation that may occlude vessels (thrombosis). Many antithrombotic drugs target key elements of the plasma coagulation mechanism such as thrombin and factor Xa, based on the premise that plasma elements contributing to thrombosis are primarily those involved in hemostasis. Recent studies with genetically altered mice raise questions about this paradigm. Deficiencies of the intrinsic pathway proteases factor XII and factor XI are not associated with abnormal hemostasis in mice, but impair formation of occlusive thrombi in arterial injury models, indicating that pathways not essential for hemostasis participate in arterial thrombosis. If factor XII or factor XI make similar contributions to thrombosis in humans, these proteases could be ideal targets for drugs to treat or prevent thromboembolic disease with minimal risk of therapy-associated bleeding.  (+info)

A catalytic domain exosite (Cys527-Cys542) in factor XIa mediates binding to a site on activated platelets. (63/216)

The zymogen, factor XI, and the enzyme, factor XIa, interact specifically with functional receptors on the surface of activated platelets. These studies were initiated to identify the molecular subdomain within factor XIa that binds to activated platelets. Both factor XIa (Ki approximately 1.4 nM) and a chimeric factor XIa containing the Apple 3 domain of prekallikrein (Ki approximately 2.7 nM) competed with [125I]factor XIa for binding sites on activated platelets, suggesting that the factor XIa binding site for platelets is not located in the Apple 3 domain which mediates factor XI binding to platelets. The recombinant catalytic domain (Ile370-Val607) inhibited the binding of [125I]factor XIa to the platelets (Ki approximately 3.5 nM), whereas the recombinant factor XI heavy chain did not, demonstrating that the platelet binding site is located in the light chain of factor XIa. A conformationally constrained cyclic peptide (Cys527-Cys542) containing a high-affinity (KD approximately 86 nM) heparin-binding site within the catalytic domain of factor XIa also displaced [125I]factor XIa from the surface of activated platelets (Ki approximately 5.8 nM), whereas a scrambled peptide of identical composition was without effect, suggesting that the binding site in factor XIa that interacts with the platelet surface resides in the catalytic domain near the heparin binding site of factor XIa. These data support the conclusion that a conformational transition accompanies conversion of factor XI to factor XIa that conceals the Apple 3 domain factor XI (zymogen) platelet binding site and exposes the factor XIa (enzyme) platelet binding site within the catalytic domain possibly comprising residues Cys527-Cys542.  (+info)

Characterization of seven novel mutations causing factor XI deficiency. (64/216)

BACKGROUND AND OBJECTIVES: Factor XI (FXI) deficiency is a rare autosomal recessive disorder, the main manifestation of which is injury-related bleeding. The disorder is rare in most populations, but common among Jews in whom two mutations, E117X and F283L, account for 98% of cases. Other mutations, C38R and C128X, are prevalent in French Basques and Britons, respectively. Additional sporadic mutations have been described in most parts of the world. The objective of this study was to identify the mutations in 15 unrelated FXI-deficient patients and characterize missense mutations by expression in baby hamster kidney (BHK) cells. DESIGN AND METHODS: Clinical and laboratory information and DNA samples were obtained from the patients and mutations were identified by sequencing. Missense mutations were expressed in BHK cells and their effect on FXI secretion and dimerization was assessed using enzyme-linked immunosorbent assay and immunoblotting. RESULTS: Of 16 mutations detected, seven are novel including two deletions, one splice site and four missense mutations. Expression of the four novel missense mutations (C58Y, Y427C, C527Y and V20A) in cells revealed no secretion of FXI-C58Y, Y427C and C527Y and secretion of only 22% of normal in the medium for FXI-V20A. Secretion of FXI from BHK cells harboring a previously reported E297K substitution cells was also impaired (4.5% of wild-type). Homodimerization was normal for all five mutants. INTERPRETATION AND CONCLUSIONS: Defective homodimerization of FXI was previously recognized as a major mechanism for defective secretion of FXI from producing cells. In this study, five FXI missense mutations (four novel) were associated with impaired secretion albeit normal dimerization, underscoring the existence of other mechanisms for defective secretion.  (+info)