Regulation of factor VIIIa by human activated protein C and protein S: inactivation of cofactor in the intrinsic factor Xase. (17/674)

Factor VIIIa is a trimer of A1, A2, and A3-C1-C2 subunits. Inactivation of the cofactor by human activated protein C (APC) results from preferential cleavage at Arg336 within the A1 subunit, followed by cleavage at Arg562 bisecting the A2 subunit. In the presence of human protein S, the rate of APC-dependent factor VIIIa inactivation increased several-fold and correlated with an increased rate of cleavage at Arg562. (Active site-modified) factor IXa, blocked cleavage at the A2 site. However, APC-catalyzed inactivation of factor VIIIa proceeded at a similar rate independent of factor IXa, consistent with the location of the preferential cleavage site within the A1 subunit. Addition of protein S failed to increase the rate of cleavage at the A2 site when factor IXa was present. In the presence of factor X, cofactor inactivation was inhibited, due to a reduced rate of cleavage at Arg336. However, inclusion of protein S restored near original rates of factor VIIIa inactivation and cleavage at the A1 site, thus overcoming the factor X-dependent protective effect. These results suggest that in the human system, protein S stimulates APC-catalyzed factor VIIIa inactivation by facilitating cleavage of A2 subunit (an effect retarded in the presence of factor IXa), as well as abrogating protective interactions of the cofactor with factor X. (Blood. 2000;95:1714-1720)  (+info)

Calcium-binding EGF-like modules in coagulation proteinases: function of the calcium ion in module interactions. (18/674)

Epidermal growth factor (EGF)-like modules are involved in protein-protein interactions and are found in numerous extracellular proteins and membrane proteins. Among these proteins are enzymes involved in blood coagulation, fibrinolysis and the complement system as well as matrix proteins and cell surface receptors such as the EGF precursor, the low density lipoprotein receptor and the developmentally important receptor, Notch. The coagulation enzymes, factors VII, IX and X and protein C, all have two EGF-like modules, whereas the cofactor of activated protein C, protein S, has four EGF-like modules in tandem. Certain of the cell surface receptors have numerous EGF modules in tandem. A subset of EGF modules bind one Ca(2+). The Ca(2+)-binding sequence motif is coupled to a sequence motif that brings about beta-hydroxylation of a particular Asp/Asn residue. Ca(2+)-binding to an EGF module is important to orient neighboring modules relative to each other in a manner that is required for biological activity. The Ca(2+) affinity of an EGF module is often influenced by its N-terminal neighbor, be it another EGF module or a module of another type. This can result in an increase in Ca(2+) affinity of several orders of magnitude. Point mutations in EGF modules that involve amino acids which are Ca(2+) ligands result in the biosynthesis of biologically inactive proteins. Such mutations have been identified, for instance, in factor IX, causing hemophilia B, in fibrillin, causing Marfan syndrome, and in the low density lipoprotein receptor, causing hypercholesterolemia. In this review the emphasis will be on the coagulation factors.  (+info)

Reversible regulation of tissue factor-induced coagulation by glycosyl phosphatidylinositol-anchored tissue factor pathway inhibitor. (19/674)

Endothelial and tumor cells synthesize tissue factor pathway inhibitor (TFPI-1), which regulates tissue factor (TF) function by TF. VIIa. Xa. TFPI-1 quaternary complex formation (where VIIa and Xa are coagulation factors) and by translocation of these complexes into glycosphingolipid-rich microdomains of the cell membrane. Recombinant TFPI-1 added exogenously to cells is targeted to a degradation pathway. This study analyzes whether quaternary complex formation with endogenous TFPI-1 results also in internalization and degradation. We demonstrate that endogenous TFPI-1 and recombinant TFPI-1 differ in their distribution on the cell surface. Recombinant TFPI-1 is found in phospholipid- and glycosphingolipid-rich membrane domains, whereas endogenous TFPI-1 preferentially localizes to glycosphingolipid-rich microdomains. On quaternary complex formation, endogenous TFPI-1 remains protease sensitive and accessible for antibodies on intact cells, demonstrating that it is not appreciably internalized. Rather, regulation of TF by TFPI-1 is restored within 12 hours, consistent with dissociation of quaternary complexes on the cell surface. Endogenous TFPI-1 can be released from the cell surface by phospholipase treatment, indicating that TFPI-1 either is a glycosyl phosphatidylinositol (GPI)-anchored protein or binds to a GPI-linked receptor. We demonstrate that expression of a recombinant GPI-anchored form of TFPI-1 targets TF. VIIa complexes to glycosphingolipid-rich membrane fractions. Thus, GPI anchoring of TFPI-1 is sufficient for regulation of TF. VIIa complex function by a pathway of reversible inhibition rather than internalization and degradation.  (+info)

Structural and functional characterization of platelet receptor-mediated factor VIII binding. (20/674)

Optimal rates of factor X (FX) activation require occupancy of receptors for factor IXa (FIXa), factor VIII (FVIII), and FX on the activated platelet surface. The presence of FVIII and FX increases 5-fold the affinity of FIXa for the surface of activated platelets, and the presence of FVIII or FVIIIa generates a high affinity, low capacity specific FX-binding site on activated platelets. We have now examined the effects of FX and active site-inhibited FIXa (EGR-FIXa) on the binding of both FVIII and FVIIIa to activated platelets and show the following: (a) von Willebrand factor inhibits FVIII binding (K(i) = 0.54 nM) but not FVIIIa binding; (b) thrombin and the thrombin receptor activation peptide (SFLLRN amide) are the most potent agonists required for FVIII-binding site expression, whereas ADP is inert; (c) FVa does not compete with FVIIIa or FVIII for functional platelet-binding sites; and (d) Annexin V is a potent inhibitor of FVIIIa binding (IC(50) = 10 nM) to activated platelets. The A2 domain of FVIII significantly increases the affinity and stoichiometry of FVIIIa binding to platelets and contributes to the stability of the FX-activating complex. Both FVIII and FVIIIa binding were specific, saturable, and reversible. FVIII binds to specific, high affinity receptors on activated platelets (n = 484 +/- 59; K(d) = 3.7 +/- 0.31 nM) and FVIIIa interacts with an additional 300-500 sites per platelet with enhanced affinity (K(d) = 1.5 +/- 0.11 nM). FVIIIa binding to activated platelets in the presence of FIXa and FX is closely coupled with rates of F-X activation. The presence of EGR-FIXa and FX increases both the number and the affinity of binding sites on activated platelets for both FVIII and FVIIIa, emphasizing the validity of a three-receptor model in the assembly of the F-X-activating complex on the platelet surface.  (+info)

Basic fibroblast growth factor increases tissue factor expression in circulating monocytes and in vascular wall. (21/674)

BACKGROUND: Basic fibroblast growth factor (bFGF) promotes vascular repair and angiogenesis and can induce in vitro tissue factor (TF), a potent agent initiating thrombogenesis, which probably plays a role in angiogenesis. We investigated whether bFGF administration induced TF expression by monocytes and vascular cells. METHODS AND RESULTS: We studied TF expression in normally fed (n=16) and cholesterol-fed (2% for 6 weeks, n=16) rabbits. Animals were then randomized to receive intravenous bFGF (2.5 microg twice weekly for 3 weeks) or saline injections. TF expression was evaluated in mononuclear cells from arterial blood and in aortic sections by an immunohistochemical assay using a monoclonal anti-rabbit TF antibody (activator protein 1). Monocyte TF expression was increased by bFGF administration in both normal and hypercholesterolemic rabbits (129+/-45 versus 19+/-3 mU TF/1000 monocytes, P<0.05, and 31+/-12 versus 7+/-1 mU TF/1000 monocytes, P<0.005, respectively) and was further increased by stimulation of monocytes by endotoxin in vitro. TF expression was lower in hypercholesterolemic rabbits than in normal rabbits. In the media of the vascular wall, bFGF induced strong TF expression in normal rabbits and only weak TF expression in hypercholesterolemic ones. CONCLUSIONS: This study demonstrates that systemic administration of bFGF induces an impressive increase of TF expression in circulating monocytes and in the vascular wall in normal and to a lower extent in hypercholesterolemic rabbits. The significance of this observation in terms of inducing thrombosis in vivo needs clarification.  (+info)

Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. (22/674)

Protease-activated receptor 2 (PAR2) is expressed by vascular endothelial cells and other cells in which its function and physiological activator(s) are unknown. Unlike PAR1, PAR3, and PAR4, PAR2 is not activatable by thrombin. Coagulation factors VIIa (FVIIa) and Xa (FXa) are proteases that act upstream of thrombin in the coagulation cascade and require cofactors to interact with their substrates. These proteases elicit cellular responses, but their receptor(s) have not been identified. We asked whether FVIIa and FXa might activate PARs if presented by their cofactors. Co-expression of tissue factor (TF), the cellular cofactor for FVIIa, together with PAR1, PAR2, PAR3, or PAR4 conferred TF-dependent FVIIa activation of PAR2 and, to lesser degree, PAR1. Responses to FXa were also observed but were independent of exogenous cofactor. The TF/FVIIa complex converts the inactive zymogen Factor X (FX) to FXa. Strikingly, when FX was present, low picomolar concentrations of FVIIa caused robust signaling in cells expressing TF and PAR2. Responses in keratinocytes and cytokine-treated endothelial cells suggested that PAR2 may be activated directly by TF/FVIIa and indirectly by TF/FVIIa-generated FXa at naturally occurring expression levels of TF and PAR2. These results suggest that PAR2, although not activatable by thrombin, may nonetheless function as a sensor for coagulation proteases and contribute to endothelial activation in the setting of injury and inflammation. More generally, these findings highlight the potential importance of cofactors in regulating PAR function and specificity.  (+info)

Expression, localization, and activity of tissue factor pathway inhibitor in normal and atherosclerotic human vessels. (23/674)

Tissue factor (TF) pathway inhibitor (TFPI) is the major downregulator of the procoagulant activity of the TF-factor VIIa (FVIIa) complex (TF. FVII). The active TF present in the atherosclerotic vessel wall is proposed to be responsible for the major complication of primary atherosclerosis, namely, acute thrombosis after plaque rupture, but our knowledge of the sites of TFPI expression in relation to TF remains fragmentary. The aim of this study was to investigate the expression, localization, and activity of TFPI and its relation to the activity and distribution of TF in the normal and atherosclerotic vessel wall. We applied a novel approach in which serial cross sections of human vascular segments were used to perform a complete set of assays: immunolabeling for TFPI and/or TF, in situ hybridization for the expression of TFPI mRNA, ELISA for the determination of TFPI antigen, and functional assay for the activity of TFPI and TF. In healthy vessels, TFPI protein and mRNA are present in luminal and microvascular endothelial cells (ECs) and in the medial smooth muscle cells (SMCs). In atherosclerotic vessels, TFPI protein and mRNA frequently colocalized with TF in ECs overlying the plaque and in microvessels, as well as in the medial and neointimal SMCs, and in macrophages and T cells in areas surrounding the necrotic core. At the ultrastructural level, immunogold electron microscopy confirmed the localization of TFPI in ECs, macrophages/foam cells, and SMCs. In ECs and SMCs, the gold particles decorated the plasmalemma proper and the caveolae. ELISA on cross sections revealed that atherosclerotic tissues contain more TFPI than do the healthy vessels. TFPI was functionally active against TF. FVIIa-induced coagulation, and its activity was higher in those tissues that display less TF. The largest amount of TFPI and TF were detected in complicated arterial plaques. By immunofluorescence, TFPI colocalized with platelet- and fibrin-rich areas within the organized thrombi. Atherosclerotic vessel sections promote activation of factor X, which is dependent on the presence of TF and enhanced by preincubation of the sections with anti-TFPI IgG. Taken altogether, our results suggest that TFPI is largely expressed in the normal vessel wall and enhanced in the atherosclerotic vessel, in a manner suggesting a significant role of TFPI in the regulation of TF activity.  (+info)

Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves thrombin and factor Xa. (24/674)

Tissue factor (TF) assembled with activated factor VII (FVIIa) initiates the coagulation cascade. We recently showed that TF was essential for FVIIa-induced vascular endothelial growth factor (VEGF) production by human fibroblasts. We investigated whether this production resulted from TF activation by its binding to FVIIa or from the production of clotting factors activated downstream. Incubation of fibroblasts with a plasma-derived FVIIa concentrate induced the generation of activated factor X (FXa) and thrombin and the secretion of VEGF, which was inhibited by hirudin and FXa inhibitors. By contrast, the addition of recombinant FVIIa to fibroblasts did not induce VEGF secretion unless factor X was present. Moreover, thrombin and FXa induced VEGF secretion and VEGF mRNA accumulation, which were blocked by hirudin and FXa inhibitors, respectively. The effect of thrombin was mediated by its specific receptor, protease-activated receptor-1; in contrast, the effect of FXa did not appear to involve effector cell protease receptor-1, because it was not affected by an anti-effector cell protease receptor-1 antibody. An increase in intracellular calcium with the calcium ionophore A23187 or intracellular calcium chelation by BAPTA-AM had no effect on either basal or FXa-induced VEGF secretion, suggesting that the calcium signaling pathway was not sufficient to induce VEGF secretion. Finally, FVIIa, by itself, had no effect on mitogen-activated protein (MAP) kinase activation, contrary to thrombin and FXa, which activate the p44/p42 MAP kinase pathway, as shown by the blocking effect of PD 98059 and by Western blotting of activated MAP kinases. These findings indicate that FVIIa protease induction of VEGF expression is mediated by thrombin and FXa generated in response to FVIIa binding to TF-expressing fibroblasts; they also exclude a direct signaling involving MAP kinase activation via the intracellular domain of TF when expressed by these cells.  (+info)