Heparin modulates the 99-loop of factor IXa: effects on reactivity with isolated Kunitz-type inhibitor domains. (65/206)

Reactivity of factor IXa with basic pancreatic trypsin inhibitor is enhanced by low molecular weight heparin (enoxaparin). Previous studies by us have suggested that this effect involves allosteric modulation of factor IXa. We examined the reactivity of factor IXa with several isolated Kunitz-type inhibitor domains: basic pancreatic trypsin inhibitor, the Kunitz inhibitor domain of protease Nexin-2, and the first two inhibitor domains of tissue factor pathway inhibitor. We find that enhancement of factor IXa reactivity by enoxaparin is greatest for basic pancreatic trypsin inhibitor (>10-fold), followed by the second tissue factor pathway inhibitor domain (1.7-fold) and the Kunitz inhibitor domain of protease Nexin-2 (1.4-fold). Modeling studies of factor IXa with basic pancreatic trypsin inhibitor suggest that binding of this inhibitor is sterically hindered by the 99-loop of factor IXa, specifically residue Lys(98). Slow-binding kinetic studies support the formation of a weak initial enzyme-inhibitor complex between factor IXa and basic pancreatic trypsin inhibitor that is facilitated by enoxaparin binding. Mutation of Lys(98) to Ala in factor IXa results in enhanced reactivity with all inhibitors examined, whereas almost completely abrogating the enhancing effects of enoxaparin. The results implicate Lys(98) and the 99-loop of factor IXa in defining enzyme inhibitor specificity. More importantly, these results demonstrate the ability of factor IXa to be allosterically modulated by occupation of the heparin-binding exosite.  (+info)

First-in-human experience of an antidote-controlled anticoagulant using RNA aptamer technology: a phase 1a pharmacodynamic evaluation of a drug-antidote pair for the controlled regulation of factor IXa activity. (66/206)

BACKGROUND: Selectivity, titratability, rapidity of onset, and active reversibility are desirable pharmacological properties of anticoagulant therapy administered for acute indications and collectively represent an attractive platform to maximize patient safety. A novel anticoagulation system (REG1, Regado Biosciences), developed using a protein-binding oligonucleotide to factor IXa (drug, RB006) and its complementary oligonucleotide antidote (RB007), was evaluated in healthy volunteers. The primary objective was to determine the safety profile and to characterize the pharmacodynamic responses in this first-in-human study. METHODS AND RESULTS: Regado 1a was a subject-blinded, dose-escalation, placebo-controlled study that randomized 85 healthy volunteers to receive a bolus of drug or placebo followed 3 hours later by a bolus of antidote or placebo. Pharmacodynamic samples were collected serially. Subject characteristics were the following: median age, 32 years (interquartile range, 23 to 39 years); female gender, 35%; and median weight, 79 kg (interquartile range, 70 to 87 kg). No significant differences were found in median hemoglobin, platelet, creatinine, or liver function studies. There were no significant bleeding signals associated with RB006, and overall, both drug and antidote were well tolerated. One serious adverse event, an episode of transient encephalopathy, occurred in a subject receiving the low intermediate dose of RB006. The subject's symptoms resolved rapidly, and no further sequelae occurred. A predictable dose-pharmacodynamic response, reflected in activated partial thromboplastin time measurements, was seen after administration of the bolus of drug, with a clear correlation between the peak posttreatment activated partial thromboplastin time and post hoc weight-adjusted dose of drug (correlation coefficient, 0.725; P<0.001). In subjects treated with drug, antidote administration reversed the pharmacological activity of the drug, with a rapid (mean time, 1 to 5 minutes across all dose levels) and sustained return of activated partial thromboplastin time to within the normal range. The activated clotting time followed a similar anticoagulant response and reversal pattern. As anticipated, prothrombin time remained unchanged compared with baseline. CONCLUSIONS: These observations represent a first-in-human experience of an RNA aptamer and its complementary oligonucleotide antidote used as an anticoagulant system. The findings contribute to an emerging platform of selective, actively reversible anticoagulant drugs for use among patients with thrombotic disorders of the venous and arterial circulations.  (+info)

Fabrication and characterization of RNA aptamer microarrays for the study of protein-aptamer interactions with SPR imaging. (67/206)

RNA microarrays were created on chemically modified gold surfaces using a novel surface ligation methodology and employed in a series of surface plasmon resonance imaging (SPRI) measurements of DNA-RNA hybridization and RNA aptamer-protein binding. Various unmodified single-stranded RNA (ssRNA) oligonucleotides were ligated onto identical 5'-phosphate-terminated ssDNA microarray elements with a T4 RNA ligase surface reaction. A combination of ex situ polarization modulation FTIR measurements of the RNA monolayer and in situ SPRI measurements of DNA hybridization adsorption onto the surface were used to determine an ssRNA surface density of 4.0 x 10(12) molecules/cm2 and a surface ligation efficiency of 85 +/- 10%. The surface ligation methodology was then used to create a five-component RNA microarray of potential aptamers for the protein factor IXa (fIXa). The relative surface coverages of the different aptamers were determined through a novel enzymatic method that employed SPRI measurements of a surface RNase H hydrolysis reaction. SPRI measurements were then used to correctly identify the best aptamer to fIXa, which was previously determined from SELEX measurements. A Langmuir adsorption coefficient of 1.6 x 10(7) M(-1) was determined for fIXa adsorption to this aptamer. Single-base variations from this sequence were shown to completely destroy the aptamer-fIXa binding interaction.  (+info)

Factor IXa inhibitors as novel anticoagulants. (68/206)

Currently available anticoagulants are limited by modest therapeutic benefits, narrow clinical applications, increased bleeding risk, and drug-induced thrombophilia. Because factor IX plays a pivotal role in tissue factor (TF)-mediated thrombin generation, it may represent a promising target for drug development. Several methods of attenuating factor IX activity, including monoclonal antibodies, synthetic active site-blocked competitive inhibitors, oral inhibitors, and RNA aptamers, have undergone investigation. This review summarizes present knowledge of factor IX inhibitors with emphasis on biology, pharmacology, preclinical data, and early-phase clinical experience in humans.  (+info)

Role of gamma-carboxyglutamic acid residues in the binding of factor IXa to platelets and in factor-X activation. (69/206)

To study the requirements for factor-IXa binding to platelets and factor-X activation, we examined the consequences of chemical modification (factor IXMOD) or enzymatic removal (factor IXDES) of gamma-carboxyglutamic acid (Gla) residues. In the presence of factor VIIIa and factor X, there were 344 (+/- 52) binding sites/platelet for factor IXaMOD (apparent dissociation constant [kdapp] = 4.5 +/- 0.9 nmol/L) and 275 (+/- 35) sites/platelet for factor IXaDES (kdapp = 5.0 +/- 0.8 nmol/L) compared with 580 (+/-65) sites/platelet for normal factor IXa (factor IXaN) (kdapp = 0.61 +/- 0.1 nmol/L) and 300 (+/-62) sites/platelet for factor IX (kdapp = 2.9 +/- 0.29 nmol/L). The concentrations of factor IXaN, factor IXaMOD and factor IXaDES required for half-maximal rates of factor-Xa formation were 0.67 nmol/L, 3.5 nmol/L, and 6.7 nmol/L. Whereas maximal velocities (Vmax) of factor Xa formation by factor IXaMOD (approximately 0.8 nmol/L.min-1) and factor IXaN (approximately 10.5 nmol/L.min-1), turnover numbers (kcat expressed as moles of factor Xa formed per minute per mole of factor IXa bound), and values of catalytic efficiency (kcat/Km) were normal, indicating that the decreased rates of factor X activation observed with factor IXaMOD and factor IXaDES are solely a consequence of the abnormal binding of these proteins to thrombin-activated platelets in the presence of factor VIIIa and factor X. Thus, factor IXa binding to platelets is mediated in part, but not exclusively, by high-affinity Ca2+ binding sites in the Gla domain of factor IX.  (+info)

Factor IXa enhances reconstitution of factor VIIIa from isolated A2 subunit and A1/A3-C1-C2 dimer. (70/206)

Heterotrimeric factor VIIIa was reconstituted from isolated A2 subunit and A1/A3-C1-C2 dimer of thrombin-activated human factor VIII in a reaction that was sensitive to pH. Maximal levels of reconstituted factor VIIIa at pH 6.0 were as much as 20-fold greater than were values observed at pH 7.5. The presence of factor IXa and phospholipid resulted in a marked increase in factor VIIIa reconstituted at physiologic pH. However, the resultant factor VIIIa was unstable due to slow proteolysis of the A1 subunit. Factor IXa modified by the active site-specific reagent dansyl-glutamyl-glycyl-arginyl-chloromethyl ketone (DEGR-IXa) increased the level of factor VIIIa reconstituted from subunits to a similar extent as was observed for unmodified factor IXa and yielded stable factor VIIIa. This enhancement was saturated above a 1:1 molar ratio of DEGR-IXa to factor VIIIa subunits and could be blocked by an anti-factor IX antibody, suggesting that the DEGR-IXa-dependent increase in factor VIIIa reconstitution correlated with assembly of the factor X-ase complex. At a saturating amount of DEGR-IXa, the level of factor VIIIa reconstitution at pH 7.5 approached values obtained at pH 6.0. Fluorescence polarization measurements indicated that factor VIIIa altered binding of DEGR-IXa to phospholipid. However, neither the A2 subunit nor the A1/A3-C1-C2 dimer alone produced this effect. This result suggested that both A2 and A1/A3-C1-C2 were necessary for association of the cofactor with factor IXa. These results suggest a model in which assembly of the intrinsic factor X-ase complex stabilizes factor VIIIa through inhibition of subunit dissociation.  (+info)

Functional duplication of ligand-binding domains within low-density lipoprotein receptor-related protein for interaction with receptor associated protein, alpha2-macroglobulin, factor IXa and factor VIII. (71/206)

The low-density lipoprotein receptor-related protein (LRP) binds a range of proteins including receptor associated protein (RAP), activated alpha2-macroglobulin (alpha2M*), factor IXa (FIXa), and factor VIII (FVIII) light chain. The binding is mediated by the complement-type repeats, which are clustered in four distinct regions within LRP. Cluster II of 8 repeats (CR3-10) and cluster IV of 11 repeats (CR21-31) have been implicated in ligand-binding. Previous studies have aimed to identify the cluster II repeats involved in binding alpha2M* and RAP. We now evaluated the binding to RAP, alpha2M*, FIXa and FVIII light chain of triplicate repeat-fragments of not only clusters II but also of cluster IV. Employing surface plasmon resonance analysis, we found that most efficient ligand-binding was displayed by the repeats within region CR4-8 of cluster II and within region CR24-28 of cluster IV. Whereas the binding to RAP could be attributed to two consecutive repeats (CR5-6, CR26-27), combinations of three repeats showed most efficient binding to FIXa (CR6-8, CR26-28), FVIII light chain (CR5-7, CR6-8, CR24-26), and alpha2M* (CR4-6, CR24-26). The results imply that there is an internal functional duplication of complement-type repeats within LRP resulting in two clusters that bind the same ligands.  (+info)

Computationally derived points of fragility of a human cascade are consistent with current therapeutic strategies. (72/206)

The role that mechanistic mathematical modeling and systems biology will play in molecular medicine and clinical development remains uncertain. In this study, mathematical modeling and sensitivity analysis were used to explore the working hypothesis that mechanistic models of human cascades, despite model uncertainty, can be computationally screened for points of fragility, and that these sensitive mechanisms could serve as therapeutic targets. We tested our working hypothesis by screening a model of the well-studied coagulation cascade, developed and validated from literature. The predicted sensitive mechanisms were then compared with the treatment literature. The model, composed of 92 proteins and 148 protein-protein interactions, was validated using 21 published datasets generated from two different quiescent in vitro coagulation models. Simulated platelet activation and thrombin generation profiles in the presence and absence of natural anticoagulants were consistent with measured values, with a mean correlation of 0.87 across all trials. Overall state sensitivity coefficients, which measure the robustness or fragility of a given mechanism, were calculated using a Monte Carlo strategy. In the absence of anticoagulants, fluid and surface phase factor X/activated factor X (fX/FXa) activity and thrombin-mediated platelet activation were found to be fragile, while fIX/FIXa and fVIII/FVIIIa activation and activity were robust. Both anti-fX/FXa and direct thrombin inhibitors are important classes of anticoagulants; for example, anti-fX/FXa inhibitors have FDA approval for the prevention of venous thromboembolism following surgical intervention and as an initial treatment for deep venous thrombosis and pulmonary embolism. Both in vitro and in vivo experimental evidence is reviewed supporting the prediction that fIX/FIXa activity is robust. When taken together, these results support our working hypothesis that computationally derived points of fragility of human relevant cascades could be used as a rational basis for target selection despite model uncertainty.  (+info)