Regulation of 2-carboxy-D-arabinitol 1-phosphate phosphatase: activation by glutathione and interaction with thiol reagents. (1/2746)

2-Carboxy-D-arabinitol 1-phosphate (CA1P) phosphatase de- grades CA1P, an inhibitor associated with the regulation of ribulose bisphosphate carboxylase/oxygenase in numerous plant species. CA1P phosphatase purified from Phaseolus vulgaris was partially inactivated by oxidizing conditions during dialysis in air-equilibrated buffer. Phosphatase activity could then be stimulated 1.3-fold by dithiothreitol and also by addition of reduced thioredoxin from Escherichia coli. These effects were enhanced synergistically by the positive effector, fructose 1, 6-bisphosphate (FBP). Most notably, CA1P phosphatase activity was stimulated up to 35-fold by glutathione, and was sensitive to the ratio of reduced (GSH) to oxidized (GSSG) forms. At concentrations of glutathione approximating measured levels in chloroplasts of P. vulgaris (5 mM total S), CA1P phosphatase exhibited >20-fold stimulation by a change in the redox status of glutathione from 60 to 100% GSH. This stimulation was augmented further by reduced E. coli thioredoxin. In contrast, FBP, which activates CA1P phosphatase under reducing conditions, was strongly inhibitory in the presence of GSSG. We propose that glutathione may have an appreciable role in the light/dark regulation of CA1P phosphatase in vivo. A model for the reversible activation of CA1P phosphatase by GSH was derived based upon the various responses of the enzyme's activity to a range of thiol reagents including N-ethylmaleimide, 5, 5'-dithiobis-(2-nitrobenzoic acid) and arsenite. These data indicate that the bean enzyme contains two physically distinct sets of thiol groups that are critical to its redox regulation.  (+info)

The localisation of 2-carboxy-D-arabinitol 1-phosphate and inhibition of Rubisco in leaves of Phaseolus vulgaris L. (2/2746)

A recent controversial report suggests that the nocturnal inhibitor of Rubisco, 2-carboxy-D-arabinitol 1-phosphate (CAIP), does not bind to Rubisco in vivo and therefore that CA1P has no physiological relevance to photosynthetic regulation. It is now proved that a direct rapid assay can be used to distinguish between Rubisco-bound and free CA1P, as postulated in the controversial report. Application of this direct assay demonstrates that CA1P is bound to Rubisco in vivo in dark-adapted leaves. Furthermore, CA1P is shown to be in the chloroplasts of mesophyll cells. Thus, CA1P does play a physiological role in the regulation of Rubisco.  (+info)

The cleavable carboxyl-terminus of the small coat protein of cowpea mosaic virus is involved in RNA encapsidation. (3/2746)

The site of cleavage of the small coat protein of cowpea mosaic virus has been precisely mapped and the proteolysis has been shown to result in the loss of 24 amino acids from the carboxyl-terminus of the protein. A series of premature termination and deletion mutants was constructed to investigate the role or roles of these carboxyl-terminal amino acids in the viral replication cycle. Mutants containing premature termination codons at or downstream of the cleavage site were viable but reverted to wild-type after a single passage through cowpea plants, indicating that the carboxyl-terminal amino acids are important. Mutants with the equivalent deletions were genetically stable and shown to be debilitated with respect to virus accumulation. The specific infectivity of preparations of a deletion mutant (DM4) lacking all 24 amino acids was 6-fold less than that of a wild-type preparation. This was shown to be a result of DM4 preparations containing a much increased percentage (73%) of empty (RNA-free) particles, a finding that implicates the cleavable carboxyl-terminal residues in the packaging of the virion RNAs.  (+info)

Hormone-related, muscle-specific changes in protein metabolism and fiber type profile after faba bean intake. (4/2746)

Male growing Wistar rats were fed, over 15 days, isoenergetic (16.72 +/- 0.49 MJ) and isoproteic (11%) diets containing either lactalbumin or raw Vicia faba L. (Vf) as the sole source of protein. Compared with pair-fed controls (PF), soleus muscles of Vf-fed rats showed increased (P < 0.05) synthesis and breakdown rates. In addition, the soleus of Vf-fed rats displayed a decrease (P < 0.05) in type I and an increase (P < 0.01) in type IIc fibers compared with that of PF animals. On the contrary, extensor digitorum longus muscles of both Vf-fed and PF rats showed an increase (P < 0.01) in type I and a reduction (P < 0.05) in type IIb fibers together with a decrease (P < 0.05) in the cross-sectional area of the latter fibers. Vf-fed rats exhibited a significant decrease in serum insulin (P < 0.05) and thyrotropin (P < 0.01) levels, together with an increase in plasma glucagon (P < 0.05) and 3,5,3'-triiodothyronine (P < 0.01) concentrations, compared with the PF group. Both Vf-fed and PF rats experienced an increase in corticosterone concentrations (P < 0.01 vs. control; P < 0.05 vs. PF). The muscle-specific changes in both protein metabolism and fiber type composition may partly depend on the hormonal changes that were observed after Vf intake.  (+info)

Adaptation of the geminivirus bean yellow dwarf virus to dicotyledonous hosts involves both virion-sense and complementary-sense genes. (5/2746)

Bean yellow dwarf virus (BeYDV) and maize streak virus (MSV) belong to the geminivirus genus Mastrevirus and have host ranges confined to dicotyledonous and monocotyledonous species, respectively. To investigate viral determinants of host range specificity, chimeras were constructed by exchanging their coding and non-coding regions. BeYDV chimeras containing MSV ORF V1, ORF V2 or small intergenic region sequences, either individually or in various sequential combinations, replicated and produced virus particles in Nicotiana tabacum protoplasts. BeYDV chimeras containing MSV ORFs C1 and C2 and/or the large intergenic region were unable to replicate. None of the chimeras was able to systemically infect either N. benthamiana or maize. Complementation experiments using BeYDV chimeras containing MSV ORF V1 and/or ORF V2 suggest that expression of MSV movement protein and/or coat protein prevents BeYDV movement. The results demonstrate that factors involved in both viral DNA replication and virus movement are exclusively adapted to either monocotyledonous or dicotyledonous host backgrounds.  (+info)

Molecular characterization and crystallization of Diocleinae lectins. (6/2746)

Molecular characterization of seven Diocleinae lectins was assessed by sequence analysis, determination of molecular masses by mass spectrometry, and analytical ultracentrifugation equilibrium sedimentation. The lectins show distinct pH-dependent dimer-tetramer equilibria, which we hypothesize are due to small primary structure differences at key positions. Lectins from Dioclea guianensis, Dioclea virgata, and Cratylia floribunda seeds have been crystallized and preliminary X-ray diffraction analyses are reported.  (+info)

The covalent attachment of polyamines to proteins in plant mitochondria. (7/2746)

Plant mitochondria from both potato and mung bean incorporated radioactivity into acid insoluble material when incubated with labelled polyamines (spermine, spermidine and putrescine). Extensive washing of mitochondrial precipitates with trichloroacetic acid and the excess of cold polyamine failed to remove bound radioactivity. Addition of nonradioactive polyamine stopped further incorporation of radioactivity but did not release radioactivity already bound. The radioactivity is incorporated into the membrane fraction. The labelling process has all the features of an enzymatic reaction: it is long lasting with distinctive kinetics peculiar to each polyamine, it is temperature dependent and is affected by N-ethylmaleimide. The latter inhibits the incorporation of putrescine but stimulates the incorporation of spermine and spermidine. Treatment of prelabelled mitochondria with pepsin releases bound radioactivity thus indicating protein to be the ligand for the attachment of polyamines. HPLC of mitochondrial hydrolysates revealed that the radioactivity bound to mitochondria is polyamines; traces of acetyl polyamines were also found in some samples. On autoradiograms of SDS/PAGE gels several radioactive bands of proteins were detected. Protein sequencing of labelled spots from a 2D gel gave a sequence which was 60% identical to catalase. We suggest that the attachment of polyamines to mitochondrial proteins occurs cotranslationally possibly via transglutaminases.  (+info)

Post-translational processing of two alpha-amylase inhibitors and an arcelin from the common bean, Phaseolus vulgaris. (8/2746)

Mass spectrometric methods were used to investigate the proteolytic processing and glycopeptide structures of three seed defensive proteins from Phaseolus vulgaris. The proteins were the alpha-amylase inhibitors alphaAI-1 and alphaAI-2 and arcelin-5, all of which are related to the seed lectins, PHA-E and PHA-L. The mass data showed that the proteolytic cleavage required for activation of the amylase inhibitors is followed by loss of the terminal Asn residue in alphaAI-1, and in all three proteins, seven or more residues were clipped from the C-termini, in the manner of the seed lectins. In most instances, individual glycoforms could be assigned at each Asn site, due to the unique masses of the plant glycopeptides. It was found that alphaAI-1 and alphaAI-2 differed significantly in their glycosylation patterns, despite their high sequence homology. These data complement the previous X-ray studies of the alpha1-amylase inhibitor and arcelin, where many of the C-terminal residues and glycopeptide residues could not be observed.  (+info)