SWiP-1: novel SOCS box containing WD-protein regulated by signalling centres and by Shh during development. (33/3268)

We describe a novel chick WD-protein, cSWiP-1, expressed in somitic mesoderm and developing limb buds as well as in other embryonic structures where Hedgehog signalling has been shown to play a role. Using embryonic manipulations we show that in somites cSWiP-1 expression integrates two signals originating from structures adjacent to the segmental mesoderm: a positive signal from the notochord and a negative signal from intermediate and/or lateral mesoderm. In explant cultures of somitic mesoderm, Shh protein induces cSWiP-1, while a blocking antibody to Shh inhibits the induction of cSWiP-1 by the notochord. These results show that the positive signal from the notochord is mediated by Shh. We also show that in limb buds cSWiP-1 is upregulated by ectopic Shh. This occurs in about the same time period as upregulation of BMP2, placing cSWiP-1 among the earliest markers for the change of limb pattern caused by ectopic Shh. We also describe a human homologue of cSWiP-1 and a mouse gene, mSWiP-2, that is more distantly related to SWiP-1, suggesting that SWiP-1 belongs to a novel subfamily of WD-proteins.  (+info)

Sonic hedgehog (SHH) specifies muscle pattern at tissue and cellular chick level, in the chick limb bud. (34/3268)

Development of the musculature in chick limbs involves tissue and cellular patterning. Patterning at the tissue level leads to the precise arrangement of specific muscles; at the cellular level patterning gives rise to the fibre type diversity in muscles. Although the data suggests that the information controlling muscle patterning is localised within the limb mesenchyme and not in the somitic myogenic precursor cells themselves, the mechanisms underlying muscle organisation have still to be elucidated. The anterior-posterior axis of the limb is specified by a group of cells in the posterior region of the limb mesenchyme, called the zone of polarizing activity (ZPA). When polarizing-region cells are grafted to the anterior margin of the bud, they cause mirror-image digit duplications to be produced. The effect of ZPA grafts can be reproduced by application of retinoic acid (RA) beads and by grafting sonic hedgehog (SHH)-expressing cells to the anterior margin of the limb. Although most previous studies have looked at changes of the skeletal patterning, ZPA and RA also affect muscle patterning. In this report, we investigated the role of SHH in tissue and cellular patterning of forearm wing muscles. Ectopic application of a localised source of SHH to the anterior margin of the wing, leading to complete digit duplication, is able to transform anterior forearm muscles into muscles with a posterior identity. Moreover, the ectopic source of SHH induces a mirror image duplication of the normal posterior muscles fibre types in the new posterior muscles. The reorganisation of the slow fibres can be detected before muscle mass cleavage has started; suggesting that the appropriate fibre type arrangement is in place before the splitting process can be observed.  (+info)

Differential distribution of retinoic acid synthesis in the chicken embryo as determined by immunolocalization of the retinoic acid synthetic enzyme, RALDH-2. (35/3268)

Retinaldehyde dehydrogenase type 2 (RALDH-2) is a major retinoic acid generating enzyme in the early embryo. Here we report the immunolocalization of this enzyme (RALDH-2-IR) in stage 6-29 chicken embryos; we also show that tissues that exhibit strong RALDH-2-IR in the embryo contain RALDH-2 and synthesize retinoic acid. RALDH-2-IR indicates dynamic and discrete patterns of retinoic acid synthesis in the embryo, particularly within the somitic mesoderm, lateral mesoderm, kidney, heart, and spinal motor neurons. Prior to somitogenesis, RALDH-2-IR is present in the paraxial mesoderm with a rostral boundary at the level of the presumptive first somite; as the somites form, they exhibit strong RALDH-2-IR. Cervical presomitic mesoderm exhibits RALDH-2-IR but thoracic presomitic mesoderm does not. Neural crest cells do not express detectable levels of RALDH-2, but migrating crest cells are associated with RALDH-2 expressing mesoderm. The developing limb mesoderm expresses little RALDH-2-IR; however, RALDH-2-IR is strongly expressed in tissues adjacent to the limb. The most lateral, earliest-projecting motor neurons at all levels of the spinal cord exhibit RALDH-2-IR. Subsequently, many additional motor neurons in the brachial and lumbar cord regions express RALDH-2-IR. Motor neuronal expression of RALDH-2-IR is present in the growing axons as they extend to the periphery, indicating a potential role of retinoic acid in nerve influences on peripheral differentiation. With the exception of a transient expression in the facial/vestibulocochlear nucleus, cranial motor neurons do not express detectable levels of RALDH-2-IR.  (+info)

Patterning of Drosophila leg sensory organs through combinatorial signaling by hedgehog, decapentaplegic and wingless. (36/3268)

During development, global patterning events initiate signal transduction cascades which gradually establish an array of individual cell fates. Many of the genes which pattern Drosophila are expressed throughout development and specify diverse cell types by creating unique local environments which establish the expression of locally acting genes. This process is exemplified by the patterning of leg microchaete rows. hairy (h) is expressed in a spatially restricted manner in the leg imaginal disc and functions to position adult leg bristle rows by negatively regulating the proneural gene achaete, which specifies sensory cell fates. While much is known about the events that partition the leg imaginal disc and about sensory cell differentiation, the mechanisms that refine early patterning events to the level of individual cell fate specification are not well understood. We have investigated the regulation of h expression along the dorsal/ventral (D/V) axis of the leg adjacent to the anterior/posterior (A/P) compartment boundary and have found that it requires input from both D/V and A/P patterning mechanisms. Expression of the D/V axis h stripe (D/V-h) is controlled by dorsal- and ventral-specific enhancer elements which are targets of Decapentaplegic (Dpp) and Wingless (Wg) signaling, respectively, but which are also dependent on Hedgehog (Hh) signaling for activation. D/V-h expression is lost in smoothened mutant clones and is specifically activated by exogenously supplied Cubitus interruptus (Ci). D/V-h expression is also lost in clones deficient for Dpp and Wg signaling, but ectopic activation of D/V-h by Dpp and Wg is limited to the A/P compartment boundary where endogenous levels of full-length Ci are high. We propose that D/V-h expression is regulated in a non-linear pathway in which Ci plays a dual role. In addition to serving as an upstream activator of Dpp and Wg, Ci acts combinatorially with them to activate D/V-h expression.  (+info)

Composite signalling from Serrate and Delta establishes leg segments in Drosophila through Notch. (37/3268)

The receptor protein NOTCH and its ligands SERRATE and DELTA are involved in many developmental processes in invertebrates and vertebrates alike. Here we show that the expression of the Serrate and Delta genes patterns the segments of the leg in Drosophila by a combination of their signalling activities. Coincident stripes of Serrate and Delta expressing cells activate Enhancer of split expression in adjacent cells through Notch signalling. These cells form a patterning boundary from which a putative secondary signal leads to the development of leg joints. Elsewhere in the tarsal segments, signalling by DELTA and NOTCH is necessary for the development of non-joint parts of the leg. We propose that these two effects result from different thresholds of NOTCH activation, which are translated into different downstream gene expression effects. We propose a general mechanism for creation of boundaries by Notch signalling.  (+info)

FGF7 and FGF10 directly induce the apical ectodermal ridge in chick embryos. (38/3268)

During vertebrate limb development, the apical ectodermal ridge (AER) plays a vital role in both limb initiation and distal outgrowth of the limb bud. In the early chick embryo the prelimb bud mesoderm induces the AER in the overlying ectoderm. However, the direct inducer of the AER remains unknown. Here we report that FGF7 and FGF10, members of the fibroblast growth factor family, are the best candidates for the direct inducer of the AER. FGF7 induces an ectopic AER in the flank ectoderm of the chick embryo in a different manner from FGF1, -2, and -4 and activates the expression of Fgf8, an AER marker gene, in a cultured flank ectoderm without the mesoderm. Remarkably, FGF7 and FGF10 applied in the back induced an ectopic AER in the dorsal median ectoderm. Our results suggest that FGF7 and FGF10 directly induce the AER in the ectoderm both of the flank and of the dorsal midline and that these two regions have the competence for AER induction. Formation of the AER of the dorsal median ectoderm in the chick embryo is likely to appear as a vestige of the dorsal fin of the ancestors.  (+info)

The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. (39/3268)

A highly conserved TGF-&bgr; signaling pathway is involved in the establishment of the dorsoventral axis of the vertebrate embryo. Specifically, Bone Morphogenetic Proteins (Bmps) pattern ventral tissues of the embryo while inhibitors of Bmps, such as Chordin, Noggin and Follistatin, are implicated in dorsal mesodermal and neural development. We investigated the role of Tolloid, a metalloprotease that can cleave Chordin and increase Bmp activity, in patterning the dorsoventral axis of the zebrafish embryo. Injection of tolloid mRNA into six dorsalized mutants rescued only one of these mutants, mini fin. Through chromosomal mapping, linkage and cDNA sequence analysis of several mini fin alleles, we demonstrate that mini fin encodes the tolloid gene. Characterization of the mini fin mutant phenotype reveals that Mini fin/Tolloid activity is required for patterning ventral tissues of the tail: the ventral fin, and the ventroposterior somites and vasculature. Gene expression studies show that mfn mutants exhibit reduced expression of ventrally restricted markers at the end of gastrulation, suggesting that the loss of ventral tail tissues is caused by a dorsalization occurring at the end of gastrulation. Based on the mini fin mutant phenotype and the expression of tolloid, we propose that Mini fin/Tolloid modifes the Bmp activity gradient at the end of gastrulation, when the ventralmost marginal cells of the embryo are in close proximity to the dorsal Chordin-expressing cells. At this time, unimpeded Chordin may diffuse to the most ventral marginal regions and inhibit high Bmp activity levels. In the presence of Mini fin/Tolloid, however, Chordin activity would be negatively modulated through proteolytic cleavage, thereby increasing Bmp signaling activity. This extracellular mechanism is amplified by an autoregulatory loop for bmp gene expression.  (+info)

Antagonism of EGFR and notch signalling in the reiterative recruitment of Drosophila adult chordotonal sense organ precursors. (40/3268)

The selection of Drosophila melanogaster sense organ precursors (SOPs) for sensory bristles is a progressive process: each neural equivalence group is transiently defined by the expression of proneural genes (proneural cluster), and neural fate is refined to single cells by Notch-Delta lateral inhibitory signalling between the cells. Unlike sensory bristles, SOPs of chordotonal (stretch receptor) sense organs are tightly clustered. Here we show that for one large adult chordotonal SOP array, clustering results from the progressive accumulation of a large number of SOPs from a persistent proneural cluster. This is achieved by a novel interplay of inductive epidermal growth factor-receptor (EGFR) and competitive Notch signals. EGFR acts in opposition to Notch signalling in two ways: it promotes continuous SOP recruitment despite lateral inhibition, and it attenuates the effect of lateral inhibition on the proneural cluster equivalence group, thus maintaining the persistent proneural cluster. SOP recruitment is reiterative because the inductive signal comes from previously recruited SOPs.  (+info)