Retinitis pigmentosa and progressive sensorineural hearing loss caused by a C12258A mutation in the mitochondrial MTTS2 gene. (1/852)

Family ZMK is a large Irish kindred that segregates progressive sensorineural hearing loss and retinitis pigmentosa. The symptoms in the family are almost identical to those observed in Usher syndrome type III. Unlike that in Usher syndrome type III, the inheritance pattern in this family is compatible with dominant, X-linked dominant, or maternal inheritance. Prior linkage studies had resulted in exclusion of most candidate loci and >90% of the genome. A tentative location for a causative nuclear gene had been established on 9q; however, it is notable that no markers were found at zero recombination with respect to the disease gene. The marked variability in symptoms, together with the observation of subclinical muscle abnormalities in a single muscle biopsy, stimulated sequencing of the entire mtDNA in affected and unaffected individuals. This revealed a number of previously reported polymorphisms and/or silent substitutions. However, a C-->A transversion at position 12258 in the gene encoding the second mitochondrial serine tRNA, MTTS2, was heteroplasmic and was found in family members only. This sequence change was not present in 270 normal individuals from the same ethnic background. The consensus C at this position is highly conserved and is present in species as divergent from Homo sapiens as vulture and platypus. The mutation probably disrupts the amino acid-acceptor stem of the tRNA molecule, affecting aminoacylation of the tRNA and thereby reducing the efficiency and accuracy of mitochondrial translation. In summary, the data presented provide substantial evidence that the C12258A mtDNA mutation is causative of the disease phenotype in family ZMK.  (+info)

Effect of plasmid carriage on the virulence of staphylococcus aureus. (2/852)

The possession of any of eight different plasmids by Staphylococcus aureus strain 649--either singly or simultaneously (in no. 649MR)--caused changes in growth kinetics. Six of the plasmids caused an increase in exponential doubling time (by 8-25%), and most also altered the duration of the lag period. Strain 649MR was significantly less virulent for 10-day chick embryos than the corresponding plasmid-negative culture (no. 649N). The avirulence persisted even after loss of the plasmids from no. 649MR. The presence of a single plasmid specifying tetracycline resistance produced a moderate reduction in virulence, but chromosomal tetracycline resistance had an insignificant effect on it. The decrease in virulence could not be attributed to reduced formation of soluble products. It probably resulted from alterations in the cell surface, but membrane-polypeptide profiles of virulent and avirulent cells lacking plasmids were similar. Survival of strains 649MR and 649N on glass was identical. Therefore, reduction in the incidence of staphylococcal sepsis may be due in part to loss of virulence that has resulted from plasmid carriage.  (+info)

Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection. (3/852)

Intracytoplasmic sperm injection (ICSI) is now used when severe male-factor infertility has been documented. Since defective mitochondrial functions may result in male hypofertility, it is of prime importance to evaluate the risk of paternal transmission of an mtDNA defect to neonates. DNA samples from the blood of 21 infertile couples and their 27 neonates born after ICSI were studied. The highly polymorphic mtDNA D-loop region was analyzed by four PCR-based approaches. With denaturing gradient gel electrophoresis (DGGE), which allows 2% of a minor mtDNA species to be detected, the 27 newborns had a DGGE pattern identical to that of their mother but different from that of their father. Heteroplasmy documented in several parents and children supported an exclusive maternal inheritance of mtDNA. The parental origin of the children's mtDNA molecules also was studied by more-sensitive assays: restriction-endonuclease analysis (REA) of alpha[32P]-radiolabeled PCR products; paternal-specific PCR assay; and depletion of maternal mtDNA, followed by REA. We did not detect paternal mtDNA in nine neonates, with a sensitivity level of 0.01% in five children, 0.1% in two children, and 1% in two children. The estimated ratio of sperm-to-oocyte mtDNA molecules in humans is 0.1%-1.5%. Thus, we conclude that, in these families, the ICSI procedure performed with mature spermatozoa did not alter the uniparental pattern of inheritance of mtDNA.  (+info)

Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder. (4/852)

Previous reports of preferential transmission of bipolar affective disorder (BP) from the maternal versus the paternal lines in families suggested that this disorder may be caused by mitochondrial DNA mutations. We have sequenced the mitochondrial genome in 25 BP patients with family histories of psychiatric disorder that suggest matrilineal inheritance. No polymorphism identified more than once in this sequencing showed any significant association with BP in association studies using 94 cases and 94 controls. To determine whether our BP sample showed evidence of selection against the maternal lineage, we determined genetic distances between all possible pairwise comparisons within the BP and control groups, based on multilocus mitochondrial polymorphism haplotypes. These analyses revealed fewer closely related haplotypes in the BP group than in the matched control group, suggesting selection against maternal lineages in this disease. Such selection is compatible with recurrent mitochondrial mutations, which are associated with slightly decreased fitness. Although such mismatch distribution comparisons have been used previously for analyses of population histories, this is, as far as we are aware, the first report of this method being used to study disease.  (+info)

Association of a penicillin resistance gene with a tetracycline resistance plasmid (PTP-2) in Staphylococcus aureus. (5/852)

On transduction with a lysogenic strain of Straphylococcus aureus isolated from a clinical specimen and having tetracycline (TC)-penicillin (PC)-chloramphenicol (CP)-resistant plasmids, the three-drug-resistant strain was frequently obtained. By repeatedly transducing from this strain, a strain (TP-2) having stable resistance to TC and PC could be obtained. In transformation with the deoxyribonucleic acid (DNA) of TP-2 as donor, all of the transformants obtained by selecting with either TC or PC were both TC and PC resistant. According to electron microscopy study of the covalently closed circular DNA of TP-2, the plasmid DNA size was 1.37 +/- 0.03 mum (2.84 x 10(6) daltons). The plasmid (P(TP-2)) is presumed to be a new plasmid in which the PC resistance gene was integrated into the TC-resistant plasmid.  (+info)

Genetic and molecular characterisation of resistance determinants in methicillin-resistant Staphylococcus-aureus. (6/852)

A genetic analysis of resistance to antibiotics in methicillin-resistant Staphylococcus aureus was performed. Demonstration of plasmid-specific DNA either in transductants that had received antibiotic-resistance markers from multiply-resistant strains, or in segregants of methicillin-resistant strains that had lost unstable determinants except the one under study, indicated that markers of resistance to penicillin, chloramphenicol and neomycin are present on separate, mutually compatible plasmids. Absence of covalently closed circular DNA was demonstrated in transductants that were resistant to methicillin, tetracycline, erythromycin and streptomycin, as well as in segregants that had lost the penicillinase, chloramphenicol and neomycin plasmid, but were still resistant to methicillin, tetracycline, erythromycin, streptomycin and the sulphonamides. Analysis of plasmid DNA either in a 5-20% neutral sucrose gradient or by electron microscopy revealed the presence of three readily distinguishable plasmids. The molecular weights of these plasmids were estimated by comparing the sedimentation rate constants with those of known reference plasmids and by contour-length measurements. The molecular weight of the penicillinase plasmid was estimated to be 20 X 10(6) daltons, that of the chloramphenicol plasmid 3 X 10(6) daltons and that of the plasmid carrying the neomycin resistance marker 37 X 10(6) daltons.  (+info)

The Drosophila pumilio gene encodes two functional protein isoforms that play multiple roles in germline development, gonadogenesis, oogenesis and embryogenesis. (7/852)

The pumilio (pum) gene plays an essential role in embryonic patterning and germline stem cell (GSC) maintenance during oogenesis in Drosophila. Here we report on a phenotypic analysis using pum(ovarette) mutations, which reveals multiple functions of pum in primordial germ cell proliferation, larval ovary formation, GSC division, and subsequent oogenic processes, as well as in oviposition. Specifically, by inducing pum(-) GSC clones at the onset of oogenesis, we show that pum is directly involved in GSC division, a function that is distinct from its requirement in primordial germ cells. Furthermore, we show that pum encodes 156- and 130-kD proteins, both of which are functional isoforms. Among pum(ovarette) mutations, pum(1688) specifically eliminates the 156-kD isoform but not the 130-kD isoform, while pum(2003) and pum(4277) specifically affect the 130-kD isoform but not the 156-kD isoform. Normal doses of both isoforms are required for the zygotic function of pum, yet either isoform alone at a normal dose is sufficient for the maternal effect function of pum. A pum cDNA transgene that contains the known open reading frame encodes only the 156-kD isoform and rescues the phenotype of both pum(1688) and pum(2003) mutants. These observations suggest that the 156- and 130-kD isoforms can compensate for each other's function in a dosage-dependent manner. Finally, we present molecular evidence suggesting that the two PUM isoforms share some of their primary structures.  (+info)

Roles of the C terminus of Armadillo in Wingless signaling in Drosophila. (8/852)

Drosophila melanogaster Armadillo and its vertebrate homolog beta-catenin play multiple roles during development. Both are components of cell-cell adherens junctions and both transduce Wingless (Wg)/Wnt intercellular signals. The current model for Wingless signaling proposes that Armadillo binds the DNA-binding protein dTCF, forming a bipartite transcription factor that activates Wingless-responsive genes. In this model, Armadillo's C-terminal domain is proposed to serve an essential role as a transcriptional activation domain. In Xenopus, however, overexpression of C-terminally truncated beta-catenin activates Wnt signaling, suggesting that the C-terminal domain might not be essential. We reexamined the function of Armadillo's C terminus in Wingless signaling. We found that C-terminally truncated mutant Armadillo has a deficit in Wg-signaling activity, even when corrected for reduced protein levels. However, we also found that Armadillo proteins lacking all or part of the C terminus retain some signaling ability if overexpressed, and that mutants lacking different portions of the C-terminal domain differ in their level of signaling ability. Finally, we found that the C terminus plays a role in Armadillo protein stability in response to Wingless signal and that the C-terminal domain can physically interact with the Arm repeat region. These data suggest that the C-terminal domain plays a complex role in Wingless signaling and that Armadillo recruits the transcriptional machinery via multiple contact sites, which act in an additive fashion.  (+info)