Promotion of neutrophil chemotaxis through differential regulation of beta 1 and beta 2 integrins. (73/5814)

Migration of neutrophils requires sequential adhesive and deadhesive interactions between beta 1 and beta 2 integrins and components of the extracellular matrix. Prompted by reports that describe interaction of soluble beta-glucan with the beta 2 integrin Mac-1, a role for beta-glucan in regulation of integrin-mediated migration was investigated. Neutrophil migration in response to fMLP was assessed using an agarose overlay method with slides precoated with fibronectin (Fn) +/- beta-glucan. On Fn, random migration in excess of directed migration was observed. In contrast, migration on Fn + beta-glucan was directional, with marked diminution of random migration. This conversion of random to directed migration was seen neither when Fn was supplemented with alternative polysaccharides nor when beta-glucan was applied to other components of the extracellular matrix. This effect of beta-glucan was shown to be cation dependent and to be effected by Arg-Gly-Asp-containing peptides consistent with an integrin-mediated event. mAb inhibition studies demonstrate that beta-glucan effects this shift toward directed migration through suppression of migration mediated by Mac-1 and very late Ag 5 and enhancement of very late Ag 3-mediated migration. Adhesion assays suggest that the prochemotactic influence of beta-glucan is due, in part but not entirely, to modulation of PMN adhesion to Fn. In summary, these data support a novel role for beta-glucan in regulation of beta 1- and beta 2-mediated neutrophil migration on Fn.  (+info)

Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. (74/5814)

The generation of vascular stroma is essential for solid tumor growth and involves stimulatory and inhibiting factors as well as stromal components that regulate functions such as cellular adhesion, migration, and gene expression. In an effort to obtain a more integrated understanding of vascular stroma formation in breast carcinoma, we examined expression of the angiogenic factor vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF); the VPF/VEGF receptors flt-1 and KDR; thrombospondin-1, which has been reported to inhibit angiogenesis; and the stromal components collagen type I, total fibronectin, ED-A+ fibronectin, versican, and decorin by mRNA in situ hybridization on frozen sections of 113 blocks of breast tissue from 68 patients including 28 sections of breast tissue without malignancy, 18 with in situ carcinomas, 56 with invasive carcinomas, and 8 with metastatic carcinomas. A characteristic expression profile emerged that was remarkably similar in invasive carcinoma, carcinoma in situ, and metastatic carcinoma, with the following characteristics: strong tumor cell expression of VPF/VEGF; strong endothelial cell expression of VPF/VEGF receptors; strong expression of thrombospondin-1 by stromal cells and occasionally by tumor cells; and strong stromal cell expression of collagen type I, total fibronectin, ED-A+ fibronectin, versican, and decorin. The formation of vascular stroma preceded invasion, raising the possibility that tumor cells invade not into normal breast stroma but rather into a richly vascular stroma that they have induced. Similarly, tumor cells at sites of metastasis appear to induce the vascular stroma in which they grow. We conclude that a distinct pattern of mRNA expression characterizes the generation of vascular stroma in breast cancer and that the formation of vascular stroma may play a role not only in growth of the primary tumor but also in invasion and metastasis.  (+info)

Detection of melanoma cells in the blood of melanoma patients by melanoma-inhibitory activity (MIA) reverse transcription-PCR. (75/5814)

The detection of tumor-specific mRNA transcripts in the blood of patients by reverse transcription (RT)-PCR has been used as a very sensitive technique for determining systemically disseminated tumor cells. On the basis of previous expression studies, we aimed to trace melanoma cells in the blood of melanoma patients by RT-PCR of melanoma-inhibitory activity (MIA) mRNA. To detect sensitively MIA transcripts in total RNA isolated from peripheral blood mononuclear cells (PBMCs), we established a sensitive PCR-ELISA system. With this assay, we detected one melanoma cell in 2 ml of blood by a single round of 32 PCR cycles. A total of 295 PBMC samples isolated from 166 patients with melanocytic tumors were tested with the MIA RT-PCR-ELISA: (a) 58 patients (99 samples) with malignant melanomas in stage I; (b) 49 patients (65 samples) with malignant melanomas in stage II; and (c) 47 patients (116 samples) with metastasized melanomas (stages III and IV), with an additional 12 patients (15 samples) with benign melanocytic nevi. Forty-four (26.8%) of 164 samples isolated from patients with melanomas in stages I and II were positive for MIA mRNA; in stages III/IV, 33 (28.4%) of 116 samples of patients, irrespective of clinically evident disease, were positive. Eleven (84.6%) of 13 PBMC samples from patients with metastasized melanoma and clinically evident disease without treatment were MIA mRNA-positive in contrast to only 19 (25.7%) of 74 samples isolated from patients in stage IV with metastasis during chemotherapy. Furthermore, none of the 16 PBMC samples of patients in stage IV without clinically detectable metastases at that time point during chemotherapy was MIA mRNA-positive. Interestingly, of the 44 positive samples (26.8%) isolated from patients with melanomas in stages I and II, 20 were still positive when retested after complete excision of the tumor. Our results reveal that amplification of MIA mRNA from the PBMCs of patients with malignant melanomas by PCR-ELISA provides a useful means to detect tumor cells in the systemic blood circulation. A correlation between positive blood samples and tumor burden in stages III and IV was detected, and, in addition, a significant effect of chemotherapy with respect to the reduction of the number of systemically spread tumor cells was observed. However, MIA amplification seems to be of little value as a surrogate marker for clinical staging or the detection of metastatic disease.  (+info)

Purification and cloning of aggrecanase-1: a member of the ADAMTS family of proteins. (76/5814)

We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.  (+info)

Xenopus laevis egg jelly contains small proteins that are essential to fertilization. (77/5814)

The eggs of Xenopus laevis are surrounded by investment layers of egg jelly that interact with the sperm immediately prior to fertilization. Components of these egg jelly layers are necessary for the fertilization of the egg by incoming sperm. Eggs which are stripped of their jelly layers are refractile to fertilization by sperm, but the addition of solubilized jelly promotes fertilization. We have shown previously that the egg jelly layers are composed of a fibrous network of glycoconjugates which loosely hold smaller diffusible components. Extracts of these diffusible components were prepared by incubation of freshly ovulated eggs in high-salt buffers for 12 h at 4 degrees C. This diffusible component extract, when incubated with sperm, promoted the sperm's ability to fertilize dejellied eggs in a dose-dependent manner. In contrast, the high-molecular-weight "structural" glycoconjugates of jelly that remain after extraction of the diffusible components did not increase fertilization efficiency of dejellied eggs nor did nonspecific proteins, carbohydrate polymers, or organic polymers. The diffusible components, analyzed by SDS-PAGE, consisted of a mixture of proteins from 4 to 180 kDa. The protein responsible for fertilization rescue appeared to be <50 kDa and appeared to self-aggregate or to bind to larger proteins. This protein component was required during sperm binding to the egg, its action required an intact egg vitelline envelope, and its action was independent of large soluble polymers such as Ficoll.  (+info)

Distribution of lectin binding sites in Xenopus laevis egg jelly. (78/5814)

Eggs from the anuran Xenopus laevis are surrounded by a thick jelly coat that is required during fertilization. The jelly coat contains three morphologically distinct layers, designated J1, J2, and J3. We examined the lectin binding properties of the individual jelly coat layers as a step in identifying jelly glycoproteins that may be essential in fertilization. The reactivity of 31 lectins with isolated jelly coat layers was examined with enzyme-linked lectin-assays (ELLAs). Using ELLA we found that most of the lectins tested showed some reactivity to all three jelly layers; however, two lectins showed jelly layer selectivity. The lectin Maackia amurensis (MAA) reacted only with J1 and J2, while the lectin Trichosanthes kirilowii (TKA) reacted only with J2 and J3. Some lectins were localized in the jelly coat using confocal microscopy, which revealed substantial heterogeneity in lectin binding site distribution among and within jelly coat layers. Wheat germ agglutinin (WGA) bound only to the outermost region of J3 and produced a thin, but very intense, band of fluorescence at the J1/J2 interface while the remainder of J2 stained lightly. The lectin MAA produced an intense fluorescence-staining pattern only at the J1/J2 interface. Several lectins were also tested for the ability to inhibit fertilization. WGA, MAA, and concanavalin A significantly inhibited fertilization and WGA was found to block fertilization by preventing sperm from penetrating the jelly. Using Western blotting, we identified high-molecular-weight components in J1 and J2 that may be important in fertilization.  (+info)

Evaluation of the effect of interleukin-6 and human extracellullar matrix on embryonic development. (79/5814)

Extracellular matrices and their associated growth factors can modulate the in-vitro growth of cells. In this study, the effects of culture substrata and the cytokine interleukin-6 (IL-6) on embryonic development were investigated. In-vitro fertilized mouse oocytes were pooled and randomly distributed amongst treatment groups. The test treatments were: (i) IL-6, at either 500 or 1000 pg/ml; (ii) human extracellular matrix (HECM) applied to organ culture dishes at either 5.0 or 10.0 microg/ml; and (iii) HECM and IL-6 combined. A total of 1285 embryos was evaluated. The effect of IL-6 on embryos was dose dependent. Treated embryos exhibited higher blastulation and hatching rates than untreated control embryos. Culture of embryos on human matrix proteins versus standard culture surfaces significantly improved in-vitro hatching. The combination of both of these treatments was superior to the medium alone control, and the mean cell count per blastocyst was higher (131.7 +/- 29.7 versus 82. 5 +/- 14.3 in control embryos; P < 0.0001). In a pilot study with human triploid embryos, the HECM/IL-6 culture system appeared to support embryonic compaction, blastulation and hatching. This work suggests that extracellular matrix components in combination with growth factors/cytokines may be another avenue for formulating more physiological culture systems.  (+info)

EMILIN, a component of the elastic fiber and a new member of the C1q/tumor necrosis factor superfamily of proteins. (80/5814)

EMILIN (elastin microfibril interface located protein) is an extracellular matrix glycoprotein abundantly expressed in elastin-rich tissues such as blood vessels, skin, heart, and lung. It occurs associated with elastic fibers at the interface between amorphous elastin and microfibrils. Avian EMILIN was extracted from 19-day-old embryonic chick aortas and associated blood vessels and purified by ion-exchange chromatography and gel filtration. Tryptic peptides were generated from EMILIN and sequenced, and degenerate inosine-containing oligonucleotide primers were designed from some peptides. A set of primers allowed the amplification of a 360-base pair reverse transcription polymerase chain reaction product from chick aorta mRNA. A probe based on a human homologue selected by comparison of the chick sequence with EST data base was used to select overlapping clones from both human aorta and kidney cDNA libraries. Here we present the cDNA sequence of the entire coding region of human EMILIN encompassing an open reading frame of 1016 amino acid residues. There was a high degree of homology (76% identity and 88% similarity) between the chick C terminus and the human sequence as well as between the N terminus of the mature chick protein where 10 of 12 residues, as determined by N-terminal sequencing, were identical or similar to the deduced N terminus of human EMILIN. The domain organization of human EMILIN includes a C1q-like globular domain at the C terminus, a collagenous stalk, and a longer segment in which at least four heptad repeats and a leucine zipper can be identified with a high potential for forming coiled-coil alpha helices. At the N terminus there is a cysteine-rich sequence stretch similar to a region of multimerin, a platelet and endothelial cell component, containing a partial epidermal growth factor-like motif. The native state of the recombinantly expressed EMILIN C1q-like domain to be used in cell adhesion was determined by CD spectra analysis, which indicated a high value of beta-sheet conformation. The EMILIN C1q-like domain promoted a high cell adhesion of the leiomyosarcoma cell line SK-UT-1, whereas the fibrosarcoma cell line HT1080 was negative.  (+info)