Rarity value and species extinction: the anthropogenic Allee effect. (9/713)

Standard economic theory predicts that exploitation alone is unlikely to result in species extinction because of the escalating costs of finding the last individuals of a declining species. We argue that the human predisposition to place exaggerated value on rarity fuels disproportionate exploitation of rare species, rendering them even rarer and thus more desirable, ultimately leading them into an extinction vortex. Here we present a simple mathematical model and various empirical examples to show how the value attributed to rarity in some human activities could precipitate the extinction of rare species-a concept that we term the anthropogenic Allee effect. The alarming finding that human perception of rarity can precipitate species extinction has serious implications for the conservation of species that are rare or that may become so, be they charismatic and emblematic or simply likely to become fashionable for certain activities.  (+info)

The true identity of the supposed giant fossil spider Megarachne. (10/713)

Megarachne servinei from the Permo-Carboniferous Bajo de Veliz Formation of San Luis Province, Argentina (32 degrees 17'S, 65 degrees 25'E), was described as a giant mygalomorph spider ('tarantula') and, with its body length of 339mm, the largest known spider ever to have lived on Earth. Its identification as a spider was based on interpretations of the shape of the carapace, the position of the eye tubercle, the anterior protrusion of the carapace as a pair of chelicerae, and the posterior circular structure as the abdomen. X-radiography revealed possible morphology hidden in the matrix: cheliceral fangs, sternum, labium and coxae, and so a reconstruction of Megarachne as a giant spider was presented. Difficulties with the interpretation (unusual cuticular ornament, suture dividing the carapace and spade-like anterior border of the chelicera), together with non-preservation of synapomorphies of Araneae, provoked debate about its interpretation as a spider. Now, the holotype and a new specimen have become available for study. Megarachne is shown to be a bizarre eurypterid ('sea-scorpion'), similar to rare forms known from Carboniferous rocks of Scotland and South Africa, and is the most complete eurypterid so far recorded from Carboniferous strata of South America.  (+info)

Relative contribution of abundant and rare species to species-energy relationships. (11/713)

A major goal of ecology is to understand spatial variation in species richness. The latter is markedly influenced by energy availability and appears to be influenced more by common species than rare ones; species-energy relationships should thus be stronger for common species. Species-energy relationships may arise because high-energy areas support more individuals, and these larger populations may buffer species from extinction. As extinction risk is a negative decelerating function of population size, this more-individuals hypothesis (MIH) predicts that rare species should respond more strongly to energy. We investigate these opposing predictions using British breeding bird data and find that, contrary to the MIH, common species contribute more to species-energy relationships than rare ones.  (+info)

A cryptic taxon of Galapagos tortoise in conservation peril. (12/713)

As once boldly stated, 'bad taxonomy can kill', highlighting the critical importance of accurate taxonomy for the conservation of endangered taxa. The concept continues to evolve almost 15 years later largely because most legal protections aimed at preserving biological diversity are based on formal taxonomic designations. In this paper we report unrecognized genetic divisions within the giant tortoises of the Galapagos. We found three distinct lineages among populations formerly considered a single taxon on the most populous and accessible island of Santa Cruz; their diagnosability, degree of genetic divergence and phylogenetic placement merit the recognition of at least one new taxon. These results demonstrate the fundamental importance of continuing taxonomic investigations to recognize biological diversity and designate units of conservation, even within long-studied organisms such as Galapagos tortoises, whose evolutionary heritage and contribution to human intellectual history warrant them special attention.  (+info)

A rapid loss of stripes: the evolutionary history of the extinct quagga. (13/713)

Twenty years ago, the field of ancient DNA was launched with the publication of two short mitochondrial (mt) DNA sequences from a single quagga (Equus quagga) museum skin, an extinct South African equid (Higuchi et al. 1984 Nature312, 282-284). This was the first extinct species from which genetic information was retrieved. The DNA sequences of the quagga showed that it was more closely related to zebras than to horses. However, quagga evolutionary history is far from clear. We have isolated DNA from eight quaggas and a plains zebra (subspecies or phenotype Equus burchelli burchelli). We show that the quagga displayed little genetic diversity and very recently diverged from the plains zebra, probably during the penultimate glacial maximum. This emphasizes the importance of Pleistocene climate changes for phylogeographic patterns in African as well as Holarctic fauna.  (+info)

Mass-dependent predation risk as a mechanism for house sparrow declines? (14/713)

House sparrow (Passer domesticus) numbers have declined rapidly in both rural and urban habitats across Western Europe over the last 30 years, leading to their inclusion on the UK conservation red list. The decline in farmland has been linked to a reduction in winter survival caused by reduced food supply. This reduction in food supply is associated with agricultural intensification that has led to the loss of seed-rich winter stubble and access to spilt grain. However, urban house sparrows have also declined, suggesting that reduced food supply in farmland is not the sole reason for the decline. Here, we show that changes in house sparrow mass and thus fat reserves are not regulated to minimize starvation risk, as would be expected if limited winter food were the only cause of population decline. Instead, the species appears to be responding to mass-dependent predation risk, with starvation risk and predation risk traded-off such that house sparrows may be particularly vulnerable to environmental change that reduces the predictability of the food supply.  (+info)

Modelling the extinction of Steller's sea cow. (15/713)

Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by 'blitzkrieg'-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cows fed. Hunting records from eighteenth century Russian expeditions to the Commander Islands, in conjunction with life-history data extrapolated from dugongs, permit modelling of sea cow extinction dynamics. Sea cows were massively and wastefully overexploited, being hunted at over seven times the sustainable limit, and suggesting that the initial Bering Island sea cow population must have been higher than suggested by previous researchers to allow the species to survive even until 1768. Environmental changes caused by sea otter declines are unlikely to have contributed to this extinction event. This indicates that megafaunal extinctions can be effected by small bands of hunters using pre-industrial technologies, and highlights the catastrophic impact of wastefulness when overexploiting resources mistakenly perceived as 'infinite'.  (+info)

Physiological constraints on organismal response to global warming: Mechanistic insights from clinally varying populations and implications for assessing endangerment. (16/713)

Recent syntheses indicate that global warming affects diverse biological processes, but also highlight the potential for some species to adapt behaviourally or evolutionarily to rapid climate change. Far less attention has addressed the alternative, that organisms lacking this ability may face extinction, a fate projected to befall one-quarter of global biodiversity. This conclusion is controversial, in part because there exist few mechanistic studies that show how climate change could precipitate extinction. We provide a concrete, mechanistic example of warming as a stressor of organisms that are closely adapted to cool climates from a comparative analysis of organismal tolerance among clinally varying populations along a natural thermal gradient. We found that two montane salamanders exhibit significant metabolic depression at temperatures within the natural thermal range experienced by low and middle elevation populations. Moreover, the magnitude of depression was inversely related to native elevation, suggesting that low elevation populations are already living near the limit of their physiological tolerances. If this finding generally applies to other montane specialists, the prognosis for biodiversity loss in typically diverse montane systems is sobering. We propose that indices of warming-induced stress tolerance may provide a critical new tool for quantitative assessments of endangerment due to anthropogenic climate change across diverse species.  (+info)