(1/1874) Gabapentin suppresses ectopic nerve discharges and reverses allodynia in neuropathic rats.

Repetitive ectopic discharges from injured afferent nerves play an important role in initiation and maintenance of neuropathic pain. Gabapentin is effective for treatment of neuropathic pain but the sites and mechanisms of its antinociceptive actions remain uncertain. In the present study, we tested a hypothesis that therapeutic doses of gabapentin suppress ectopic afferent discharge activity generated from injured peripheral nerves. Mechanical allodynia, induced by partial ligation of the sciatic nerve in rats, was determined by application of von Frey filaments to the hindpaw. Single-unit afferent nerve activity was recorded proximal to the ligated sciatic nerve site. Intravenous gabapentin, in a range of 30 to 90 mg/kg, significantly attenuated allodynia in nerve-injured rats. Furthermore, gabapentin, in the same therapeutic dose range, dose-dependently inhibited the ectopic discharge activity of 15 injured sciatic afferent nerve fibers through an action on impulse generation. However, the conduction velocity and responses of 12 normal afferent fibers to mechanical stimulation were not affected by gabapentin. Therefore, this study provides electrophysiological evidence that gabapentin is capable of suppressing the ectopic discharge activity from injured peripheral nerves. This action may contribute, at least in part, to the antiallodynic effect of gabapentin on neuropathic pain.  (+info)

(2/1874) Cladistic association analysis of Y chromosome effects on alcohol dependence and related personality traits.

Association between Y chromosome haplotype variation and alcohol dependence and related personality traits was investigated in a large sample of psychiatrically diagnosed Finnish males. Haplotypes were constructed for 359 individuals using alleles at eight loci (seven microsatellite loci and a nucleotide substitution in the DYZ3 alphoid satellite locus). A cladogram linking the 102 observed haplotype configurations was constructed by using parsimony with a single-step mutation model. Then, a series of contingency tables nested according to the cladogram hierarchy were used to test for association between Y haplotype and alcohol dependence. Finally, using only alcohol-dependent subjects, we tested for association between Y haplotype and personality variables postulated to define subtypes of alcoholism-antisocial personality disorder, novelty seeking, harm avoidance, and reward dependence. Significant association with alcohol dependence was observed at three Y haplotype clades, with significance levels of P = 0.002, P = 0.020, and P = 0.010. Within alcohol-dependent subjects, no relationship was revealed between Y haplotype and antisocial personality disorder, novelty seeking, harm avoidance, or reward dependence. These results demonstrate, by using a fully objective association design, that differences among Y chromosomes contribute to variation in vulnerability to alcohol dependence. However, they do not demonstrate an association between Y haplotype and the personality variables thought to underlie the subtypes of alcoholism.  (+info)

(3/1874) Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor.

In order to determine the distribution and function of the 5-HT5A serotonin receptor subtype, we generated knockout mice lacking the 5-HT5A gene. Comparative autoradiography studies of brains of wild-type (wt) and 5-HT5A knockout (5A-KO) mice revealed the existence of binding sites with high affinity for [125I]LSD that correspond to 5-HT5A receptors and that are concentrated in the olfactory bulb, neocortex, and medial habenula. When exposed to novel environments, the 5A-KO mice displayed increased exploratory activity but no change in anxiety-related behaviors. In addition, the stimulatory effect of LSD on exploratory activity was attenuated in 5A-KO mice. These results suggest that 5-HT5A receptors modulate the activity of neural circuits involved specifically in exploratory behavior and suggest that some of the psychotropic effects of LSD may be mediated by 5-HT5A receptors.  (+info)

(4/1874) Characterization of the electrophysiological and pharmacological effects of 4-iodo-2,6-diisopropylphenol, a propofol analogue devoid of sedative-anaesthetic properties.

1. Several derivatives and analogues of the general anaesthetic 2,6-diisopropylphenol (propofol) have been recently synthesised with the aim of exploring the structure-activity relationships. 2. In the present study, the effects of one such compound, 4-iodo-2,6-diisopropylphenol (4-I-Pro), on gamma-aminobutyric acid type A (GABA(A)) receptors in vitro were compared with its in vivo effects in rodents. Human GABA(A) receptors were expressed in Xenopus oocytes, and the actions of 4-I-Pro on receptor function were compared with those of propofol by two-electrode voltage-clamp recording. 3. Similar to propofol, 4-I-Pro directly activated Cl- currents in the absence of GABA at all combinations of receptor subunits tested. However, the efficacy of 4-I-Pro in inducing direct activation of alpha1beta2gamma2S receptors was markedly less than that of propofol. 4. Similarly to propofol, 4-I-Pro potentiated in a concentration-dependent manner GABA-evoked Cl- currents measured at different GABA(A) receptor constructs. 5. As expected, intraperitoneal injection of propofol induced sedation, ataxia, and loss of the righting reflex in rats. In contrast, administration of 4-I-Pro failed to produce any of these behavioural effects. 6. Administration of 4-I-Pro to rats reduced in a dose-dependent manner the incidence of tonic-clonic seizures induced by pentylenetetrazol and induced an anticonflict effect as measured in the Vogel test. 7. Microdialysis revealed that, like propofol, administration of 4-I-Pro reduced acetylcholine release in the hippocampus of freely moving rats. 8. These results demonstrate that para-substitution of the phenol ring of propofol with iodine yields a compound that exhibits anticonvulsant and anticonflict effects, but is devoid of sedative-hypnotic and anaesthetic properties. Thus, 4-I-Pro possesses pharmacological characteristics more similar to anxiolytic and anticonvulsant drugs than to general anaesthetics.  (+info)

(5/1874) T-lymphocyte activation increases hypothalamic and amygdaloid expression of CRH mRNA and emotional reactivity to novelty.

Stimulation of T-cells with staphylococcal enterotoxin B (SEB) significantly elevates interleukin-2 (IL-2) and contemporaneous activation of the hypothalamic-pituitary-adrenal (HPA) axis and c-fos in the paraventricular nucleus (PVN) of BALB/cByJ mice. Such neural signaling may promote cognitive and emotional adaptation before or during infectious illness. Because corticotropin-releasing hormone (CRH) is an anxiogenic neuropeptide that may mediate the stressor-like effects of immunological stimuli, we measured neuronal CRH mRNA alterations in mice challenged with SEB. Increased CRH mRNA levels were observed in the PVN and central nucleus of the amygdala (ceA) 4-6 hr after SEB administration. This was associated with plasma ACTH increases, which could be abrogated by the systemic administration of anti-CRH antiserum. Additional experiments did not support a role for IL-2 or prostaglandin synthesis in activating the HPA axis. Behavioral experiments testing for conditioned taste aversion did not confirm that SEB challenge promotes malaise. However, consistent with the notion that central CRH alterations induced by SEB may affect emotionality (e.g., fear), SEB challenge augmented appetitive neophobia in a context-dependent manner, being marked in a novel and stressful environment. It is hypothesized that immunological stimuli generate a cascade of events that solicit integrative neural processes involved in emotional behavior. As such, these data support the contention that affective illness may be influenced by immunological processes and the production of cytokines and are consistent with other evidence demonstrating that autoimmune reactivity is associated with enhanced emotionality.  (+info)

(6/1874) Sensitization to the effects of tumor necrosis factor-alpha: neuroendocrine, central monoamine, and behavioral variations.

Consistent with the proposition that cytokines act as immunotransmitters between the immune system and the brain, systemic administration of the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha; 1.0-4.0 microg) induced mild illness in CD-1 mice, increased plasma corticosterone concentrations, and altered central norepinephrine, dopamine, and serotonin turnover. The actions of TNF-alpha were subject to a time-dependent sensitization effect. After reexposure to a subeffective dose of the cytokine (1.0 microgram) 14-28 d after initial treatment, marked illness was evident (reduced consumption of a palatable substance and diminished activity and social exploration), coupled with an elevation of plasma corticosterone levels. In contrast, cytokine reexposure 1-7 d after initial treatment did not elicit illness, and at the 1 d interval the corticosterone response to the cytokine was reduced. The increase of norepinephrine release within the paraventricular nucleus of the hypothalamus, as reflected by elevated accumulation of 3-methoxy-4-hydroxyphenylglycol, was augmented at the longer reexposure intervals. In contrast, within the central amygdala and the prefrontal cortex TNF-alpha reexposure at the 1 d interval was associated with a pronounced sensitization-like effect, which was not apparent at longer intervals. Evidently, systemic TNF-alpha proactively influences the response to subsequent treatment; however, the nature of the effects (i.e., the behavioral, neuroendocrine, and central transmitter alterations) vary over time after initial cytokine treatment. It is suggested that the sensitization may have important repercussions with respect to cognitive effects of TNF-alpha and may also be relevant to analyses of the neuroprotective or neurodestructive actions of cytokines.  (+info)

(7/1874) Dopamine D4 receptor gene: novelty or nonsense?

Although the role of genetics in personality has been studied extensively at a phenomenological level, only lately has the investigation of specific genes been performed. Recent reports suggest that DNA variants of the dopamine D4 receptor gene (DRD4) are associated with the personality trait of novelty seeking; however, others fail to replicate this finding. Such conflicting results suggest either a weak effect, an association only in certain populations, or a false-positive resulting from population stratification. We provide a critical analysis of genetic studies of DRD4 variants with novelty seeking, alcoholism, drug abuse, and attention deficit hyperactivity disorder. Evidence for the role of DRD4 in novelty seeking is inconclusive, with a number of methodological concerns. Use of more conservative statistical criteria for significance, employing gene haplotypes, as well as linkage disequilibrium studies, are recommended. The molecular biology of the D4 gene is also reviewed.  (+info)

(8/1874) 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze.

In an attempt to characterize the contribution of the 5-HT1B receptor to behavior, 5-HT1B knock-out (KO) mice were subjected to a battery of behavioral paradigms aimed at differentiating various components of cognitive and emotional behaviors. In an object exploration task, wild-type (WT) and 5-HT1B KO mice did not differ in locomotor activity. 5-HT1B KO mice, however, displayed lower thigmotaxis (an index of anxiety) associated with a higher level of object exploratory activity, but no genotype differences were observed in the elevated plus maze. 5-HT1B KO mice also displayed a lack of exploratory habituation. In the spatial version of the Morris water maze, 5-HT1B KO mice showed higher performances in acquisition and transfer test, which was not observed in the visual version of the task. No genotype differences were found in contextual fear conditioning, because both WT and 5-HT1B KO mice were able to remember the context where they had received the aversive stimulus. The deletion of the 5-HT1B receptor, associated with appropriate behavioral paradigms, thus allowed us to dissociate anxiety from response to novelty, and perseverative behavior (lack of habituation) from adaptive behavioral inhibition underlying cognitive flexibility (transfer stage in the water maze). The deletion of the 5-HT1B receptor did not result in significant developmental plasticities for other major 5-HT receptor types but may have influenced other neurotransmission systems. The 5-HT1B receptor may be a key target for serotonin in the modulation of cognitive behavior, particularly in situations involving a high cognitive demand.  (+info)