Purification and characterization of the single-strand-specific and guanylic-acid-preferential deoxyribonuclease activity of the extracellular nuclease from Basidiobolus haptosporus. (41/887)

An extracellular nuclease from Basidiobolus haptosporus (designated as nuclease Bh1) was purified to homogeneity by ammonium sulfate precipitation, heat treatment, negative adsorption on DEAE-cellulose, and chromatography on phenyl-Sepharose followed by FPLC on phenyl-Superose. The overall yield was 26%. The Mr of the purified enzyme, determined by gel filtration, was 41 000 whereas by SDS/PAGE (after deglycosylation) it was 30 000. It is a glycoprotein with a pI of 6.8. The optimum pH and temperature for DNA hydrolysis were 8. 5 and 60 degrees C, respectively. Nuclease Bh1 is a metalloprotein but has no obligate requirement for metal ions to be active, nor is its activity stimulated in the presence of metal ions. The enzyme was inhibited by Zn2+, Ag2+, Hg2+, Fe3+ and Al3+, inorganic phosphate, pyrophosphate, dithiothreitol, 2-mercaptoethanol, NaCl and KCl. It was stable to high concentrations of organic solvents and urea but susceptible to low concentrations of SDS and guanidine hydrochloride. Nuclease Bh1 is a multifunctional enzyme and its substrate specificity is in the order of ssDNA approximately 3'AMP >> RNA > dsDNA. Studies on its mode of action showed that it cleaved supercoiled pUC 18 DNA and phage M13 DNA, endonucleolytically, generating single base nicks. The enzyme hydrolyzed DNA with preferential liberation of 5'dGMP, suggesting it to be a guanylic acid preferential endoexonuclease. 5'dGMP, the end product of hydrolysis, was a competitive inhibitor of the enzyme. The absence of 5'dCMP as a hydrolytic product, coupled with the resistance of (dC)10 and deoxyribodinucleoside monophosphates having cytosine either at the 3' or the 5' end, indicates that C-linkages are resistant to cleavage by nuclease Bh1.  (+info)

The roles of mutS, sbcCD and recA in the propagation of TGG repeats in Escherichia coli. (42/887)

A 24 triplet TGG.CCA repeat array shows length- and orientation-dependent propagation when present in the plasmid pUC18. When TGG(24) is present as template for leading-strand synthesis, plasmid recovery is normal in all strains tested. However, when it acts as template for lagging-strand synthesis, plasmid propagation is seriously compromised. Plasmids carrying deletions in the 5' side of this sequence can be isolated and products carrying 15 TGG triplets do not significantly interfere with plasmid propagation. Mutations in sbcCD, mutS and recA significantly improve the recovery of plasmids with TGG(24) on the lagging-strand template. These findings suggest that TGG(24) can fold into a structure that can interfere with DNA replication in vivo but that TGG(15) cannot. Furthermore, since the presence of the MutS and SbcCD proteins are required for propagation interference, it is likely that stabilisation of mismatched base pairs and secondary structure cleavage are implicated. In contrast, there is no correlation of triplet repeat expansion and deletion instability with predicted DNA folding. These results argue for a dissociation of the factors affecting DNA fragility from those affecting trinucleotide repeat expansion-contraction instability.  (+info)

Novel mutants of Escherichia coli that accumulate very small DNA replicative intermediates. (43/887)

A new group of mutants has been isolated which, during short pulses, incorporate (3-H)thymidine into DNA fragments that are substantially smaller than Okazaki fragments. These small fragments can be chased into DNA of high-molecular-weight, and thus may be precursors in DNA replication, During longer pulses, label also appears in DNA of higher molecular weight, although at an abnormally slow rate. The mutations map at a previously undescribed locus (dnaS) at 72 min on the E. coli chromosome.  (+info)

Uptake of homologous single-stranded fragments by superhelical DNA: a possible mechanism for initiation of genetic recombination. (44/887)

Superhelical [3-H]DNA (replicative form I, RFI) of bacteriophage phiX174 slowly but spontaneously took up 32-P-labeled homologous single-stranded fragments at 4 degrees. Uptake was accelerated by heating to 75 degrees. RFI did not take up single-stranded fragments derived from DNA of Escherichia coli or from separated strands of phage lambda. Uptake was inhibited by low concentrations of ethidium bromide. Relaxed circular phiX174 DNA did not take up homologous fragments. Per molecule of RFI, the complexes contained as much as 90 nucleotide residues of homologous fragment. The 32-P-lebeled fragments were largely resistant to digestion by exonuclease I, and were not displaced by heating complexes at 60 degrees for 1 min in 16 mM or 100 mM NaCl. Under comparable conditions of temperature and salt all of the fragments were displaced from complexes in which at least one phosphodiester bond was cleaved by pancreatic DNase, but a significant fraction of the fragments was retained in complexes that were relaxed by digestion with S1 nuclease. These observations are interpreted to mean that S1 nuclease digested the plus (viral) strand of the recipient RF at the site of uptake in some instances. Transfection of E. coli by heterozygous complexes produced recombinant progeny, thereby showing that genetic information can be transferred from the fragment of plus strand to progeny plus strands. We propose that both uptake of a third strand by superhelical DNA and the action of nucleases on the resulting complex may simulate early steps in genetic recombination.  (+info)

Werner syndrome exonuclease catalyzes structure-dependent degradation of DNA. (45/887)

Werner syndrome (WS) is an autosomal recessive disease characterized by early onset of many features of aging, by an unusual spectrum of cancers, and by genomic instability. The WS protein (WRN) possesses 3'-->5' DNA helicase and associated ATPase activities, as well as 3'-->5' DNA exonuclease activity. Currently, WRN is the only member of the widely distributed RecQ DNA helicase family with documented exonuclease activity. It is not known whether deficiency of the exonuclease or helicase/ATPase activities of WRN, or all of them, is responsible for various elements of the WS phenotype. WRN exonuclease has limited homology to Escherichia coli RNaseD, a tRNA processing enzyme. We show here that WRN preferentially degrades synthetic DNA substrates containing alternate secondary structures, with an exonucleolytic mode of action suggestive of RNaseD. We present evidence that structure-dependent binding of WRN to DNA requires ATP binding, while DNA degradation requires ATP hydrolysis. Apparently, the exonuclease and ATPase act in concert to catalyze structure-dependent DNA degradation. We propose that WRN protein functions as a DNA processing enzyme in resolving aberrant DNA structures via both exonuclease and helicase activities.  (+info)

Bacteriophage T7 Deoxyribonucleic acid replication in vitro. A protein of Escherichia coli required for bacteriophage T7 DNA polymerase activity. (46/887)

In vivo, replication of T7 DNA does not occur after infection of Escherchia coli tsnC mutants (CHAMBERLIN, M. (1974) J. Virol. 14, 509-516). In vitro, extracts of tsnC mutant E. coli infected with T7 hage are incapable of replicating duplex T7 DNA, although extracts of wild type E. coli infected with T7 phage support replication of T7 DNA. In addition, extracts of the infected tsnC mutant are deficient in T7 DNA polymerase activity. Extracts prepared from uninfected E.coli tsnC-+ cells restore the ability of the infected tsnC extracts to replicate duplex T7 DNA, and also restore normal levels of the phage DNA polymerase activity. A 12,000-dalton heat-stable protein responsible for this complementation has been purified to near homogeneity from uninfected tsnC+ extracts and it is designated "TsnC protein."  (+info)

Rad22 protein, a rad52 homologue in Schizosaccharomyces pombe, binds to DNA double-strand breaks. (47/887)

DNA double-strand breaks can be introduced by exogenous agents or during normal cellular processes. Genes belonging to the RAD52 epistasis group are known to repair these breaks in budding yeast. Among these genes, RAD52 plays a central role in homologous recombination and DNA double-strand break repair. Despite its importance, its mechanism of action is not yet clear. It is known, however, that the human homologue of Rad52 is capable of binding to DNA ends in vitro. Herein, we show that Rad22 protein, a Rad52 homologue in the fission yeast Schizosaccharomyces pombe, can similarly bind to DNA ends at double-strand breaks. This end-binding ability was demonstrated in vitro by electron microscopy and by protection from exonuclease attack. We also showed that Rad22 specifically binds near double-strand break associated with mating type switching in vivo by chromatin immunoprecipitation analysis. This is the first evidence that a recombinational protein directly binds to DNA double-strand breaks in vivo.  (+info)

Tramtrack protein-DNA interactions. A cross-linking study. (48/887)

Interaction of the Tramtrack protein from Drosophila melanogaster with DNA was analyzed by a cross-linking method. Tramtrack residues cross-linkable to the partially depurinated DNA were identified by direct sequencing. The N-terminal alpha-amino group of the protein DNA-binding domain was found to be the major product of cross-linking. The location of the N terminus on the DNA was determined by identification of the DNA bases that were cross-linked to the protein alpha-amino group. We conclude that accessory N-terminal peptide preceding the first zinc finger of Tramtrack directly interacts with DNA, both in specific and nonspecific DNA-protein complexes. Our finding explains the role in the protein binding of the DNA bases outside of the direct interaction with the zinc fingers.  (+info)