Elective haemodialysis increases exhaled isoprene. (1/562)

BACKGROUND: Uraemic odour is a characteristic feature of patients with end-stage renal disease (ESRD). However, few investigations have been carried out into the composition of exhaled air in ESRD patients undergoing haemodialysis (HD). Increases of exhaled isoprene levels by a factor of up to 2.7 following HD have been reported. METHODS: We attempted to confirm these findings in 50 patients undergoing HD using haemophan (n=23) or polysulphone (n=27) dialysis membranes. Parallel evaluation of ambient air, calorie intake, medication and haemodynamic variables was performed. Samples were analysed using proton transfer reaction-mass spectrometry (PTR-MS). RESULTS: Significant changes in breath isoprene concentration were observed when comparing patients before [39.14+/-14.96 parts per billion (ppbv)] and after (63.54+/-27.59 ppbv) dialysis (P<0.001). The quotient of values before and after dialysis was 1.84 (SD 1.41). No significant differences in isoprene kinetics were found between the use of haemophan and polysulphone membranes. No significant correlations were observed between isoprene quotients and variations in blood pressure during HD, calorie intake, ingestion of lipid-lowering drugs or serum lipid levels. CONCLUSIONS: Isoprene concentration was higher in the exhaled air of patients after HD as compared with values before HD. Large interindividual variability existed in isoprene kinetics. Oxidative stress appears to be an unlikely cause for this rise. An alternative hypothesis is an influence of respiratory variables on isoprene exhalation based upon Henry's law constant. We therefore propose to perform online monitoring of isoprene exhalation by PTR-MS during the HD session to investigate the possible influence of respiratory variables.  (+info)

Upper airway extraluminal tissue pressure fluctuations during breathing in rabbits. (2/562)

Transmural pressure at any level in the upper airway is dependent on the difference between intraluminal airway and extraluminal tissue pressure (ETP). We hypothesized that ETP would be influenced by topography, head and neck position, resistive loading, and stimulated breathing. Twenty-eight male, New Zealand White, anesthetized, spontaneously breathing rabbits breathed via a face mask with attached pneumotachograph to measure airflow and pressure transducer to monitor mask pressure. Tidal volume was measured via integration of the airflow signal. ETP was measured with a pressure transducer-tipped catheter inserted in the tissues of the lateral (ETPlat, n = 28) and anterior (ETPant, n = 21) pharyngeal wall. Head position was controlled at 30, 50, or 70 degrees, and the effect of addition of an external resistor, brief occlusion, or stimulated breathing was examined. Mean ETPlat was approximately 0.7 cmH2O greater than mean ETPant when adjusted for degree of head and neck flexion (P < 0.05). Mean, maximum, and minimum ETP values increased significantly by 0.7-0.8 cmH2O/20 degrees of head and neck flexion when adjusted for site of measurement (P < 0.0001). The main effect of resistive loading and occlusion was an increase in the change in ETPlat (maximum - minimum ETPlat) and change in ETPant at all head and neck positions (P < 0.05). Mean ETPlat and ETPant increased with increasing tidal volume at head and neck position of 30 degrees (all P < 0.05). In conclusion, ETP was nonhomogeneously distributed around the upper airway and increased with both increasing head and neck flexion and increasing tidal volume. Brief airway occlusion increased the size of respiratory-related ETP fluctuations in upper airway ETP.  (+info)

Purinergic signalling in the medullary mechanisms of respiratory control in the rat: respiratory neurones express the P2X2 receptor subunit. (3/562)

ATP is involved in central respiratory control and may mediate changes in the activity of medullary respiratory neurones during hypercapnia, thus playing an important role in central chemoreception. The main objective of this study was to explore further the role of ATP-mediated signalling in respiratory control and central chemoreception by characterising the profile of the P2X receptors expressed by physiologically identified respiratory neurones. In particular we determined whether respiratory neurones in the rostral ventrolateral medulla (VLM) express P2X2 receptor subunits of the ATP-gated ion channel, since ATP currents evoked at recombinant P2X2 receptors are potentiated by lowering extracellular pH. Experiments were performed on anaesthetised (pentobarbitone sodium 60 mg kg-1 I.P., then 10 mg kg-1 I.V. as required), gallamine-triethiodide-treated (10 mg kg-1 I.V., then 2-4 mg kg-1 h-1 I.V.) and artificially ventilated rats. The VLM respiratory neurones were classified according to the timing of their discharge pattern in relation to that of the phrenic nerve and by the exclusion of pump cells from the study population; these were labelled with Neurobiotin using the juxtacellular method, and visualised with fluorescence microscopy. It was found that a substantial proportion of the VLM respiratory neurones express the P2X2 receptor subunit. P2X2 receptor subunit immunoreactivity was detected in approximately 50 % (six out of 12) of expiratory neurones and in approximately 20 % (two out of 11) of neurones with inspiratory-related discharge (pre-inspiratory and inspiratory). In contrast, no Neurobiotin-labelled VLM respiratory neurones (n = 19) were detectably immunoreactive for the P2X1 receptor subunit. Microionophoretic application of ATP (0.2 M, 20-80 nA for 40 s) increased the activity of approximately 80 % (13 out of 16) of expiratory neurones and of approximately 30 % (five out of 18) of VLM neurones with inspiratory-related discharge. These effects were abolished by the P2 receptor blocker suramin (0.02 M, 80 nA), which also reduced the baseline firing in some expiratory neurones. These data indicate that modulation of P2X2 receptor function, such as that evoked by acidification of the extracellular environment during hypercapnia, may contribute to the changes in activity of the VLM respiratory neurones that express these receptors.  (+info)

Resting discharge of human muscle spindles is not modulated by increases in sympathetic drive. (4/562)

There is evidence in experimental animals that, in addition to receiving fusimotor drive, muscle spindles are subject to modulation by the sympathetic nervous system. We examined the validity of this idea in human subjects by recording from muscle spindles in the relaxed ankle and toe extensor muscles during a strong and sustained physiological activation of muscle sympathetic outflow. Unitary recordings were made from 20 primary and 17 secondary muscle spindle afferents via a tungsten microelectrode inserted percutaneously into the peroneal nerve in 10 awake, healthy subjects seated with the legs supported in the extended position. ECG, blood pressure, respiration and calf circumference were also recorded. The majority of the muscle spindles were spontaneously active at rest; a background discharge was induced in four silent spindles by vibrating the tendon. A sustained increase in muscle vasoconstrictor activity, an increase in calf volume and a fall in pulse pressure were produced by subjects performing a 30-40 s maximal inspiratory breath-hold. Despite this strong increase in muscle sympathetic outflow no significant changes occurred in the discharge of either primary or secondary muscle spindle afferents, measured as a change in mean frequency and variability over sequential 5 s epochs and compared with the preceding period of rest. Strong chemoreceptor-driven sympathetic bursts during sustained expiratory breath-holds also failed to modulate the firing of 14 spindle endings. We conclude that a sustained, physiological increase in muscle sympathetic activity causes no detectable change in muscle spindle firing, lending no support to the concept that the sympathetic nervous system can influence the sensitivity of human muscle spindles directly.  (+info)

Assessment of nasal and sinus nitric oxide output using single-breath humming exhalations. (5/562)

Nasal nitric oxide (NO) levels increase greatly during humming compared to silent exhalation. In this study, the physiological and anatomical factors that regulate NO release during humming have been characterised in 10 healthy subjects and in a model of the sinus and the nose. Single-breath humming caused a large initial peak in nasal NO output, followed by a progressive decline. The NO peak decreased in a step-wise manner during repeated consecutive humming manoeuvres but recovered completely after a silent period of 3 min. Topical nasal application of an NO synthase inhibitor reduced nasal NO by >50% but had no effect on the increase evoked by humming. Silently exhaled nasal NO measured immediately after repeated humming manoeuvres was between 5-50% lower than basal silent NO exhalation, suggesting variable continuous contribution from the sinuses to nasal NO. Among the factors known to influence normal sinus ventilation, ostium size was the most critical during humming, but humming frequency was also of importance. In conclusion, humming results in a large increase in nasal nitric oxide, which is caused by a rapid gas exchange in the paranasal sinuses. Combined nasal nitric oxide measurement with and without humming could be of use to estimate sinus ventilation and to better separate nasal mucosal nitric oxide output from sinus nitric oxide in health and disease.  (+info)

Sputum induction leads to a decrease of exhaled nitric oxide unrelated to airflow. (6/562)

Measurement of exhaled nitric oxide (eNO) and analysis of induced sputum are both established noninvasive methods for studying airway inflammation in asthma. Both methods are often used sequentially within short time frames. The aim of the present study was to evaluate the influence of sputum induction on eNO in adults and to follow the kinetics of airway eNO production after induction in relation to forced expiratory volume in one second (FEV1). eNO and FEV1 were measured in 41 adult patients (aged 29 (range 23-50) yrs, 56% male) with asymptomatic atopy or mild asthma (mean FEV1 97.2+/-3% predicted) prior to and immediately after sputum induction with hypertonic saline (4%). Sputum induction with isotonic saline was also performed in 13 subjects (control group). Repeatability of eNO decrease after sputum induction was also studied in 27 patients on separate occasions and kinetics of eNO production after sputum induction were followed over 24 h in another 10 patients. Sputum induction with hypertonic, but not isotonic, saline led to a marked decrease in eNO (log) immediately after the procedure (pre: 3.85+/-0.13 parts per billion (ppb); post: 3.24+/-0.14 ppb). This decrease was shown to be highly reproducible and not related to a fall in FEV1 following sputum induction. While FEV1 returned to baseline within 1 h, decreased eNO levels were observed over 4 h and returned to baseline after 24 h. Hypertonic saline sputum induction leads to a prolonged reduction in exhaled nitric oxide in adult atopics that is reproducible within subjects and not related to a reduction in airflow following sputum induction. This methodological interference should be taken into account when sputum induction and exhaled nitric oxide measurements are performed in the same subject.  (+info)

Spinal stiffness changes throughout the respiratory cycle. (7/562)

Posteroanterior stiffness of the lumbar spine is influenced by factors, including trunk muscle activity and intra-abdominal pressure (IAP). Because these factors vary with breathing, this study investigated whether stiffness is modulated in a cyclical manner with respiration. A further aim was to investigate the relationship between stiffness and IAP or abdominal and paraspinal muscle activity. Stiffness was measured from force-displacement responses of a posteroanterior force applied over the spinous process of L2 and L4. Recordings were made of IAP and electromyographic activity from L4/L2 erector spinae, abdominal muscles, and chest wall. Stiffness was measured with the lung volume held at the extremes of tidal volume and at greater and lesser volumes. Stiffness at L4 and L2 increased above base-level values at functional residual capacity (L2 14.9 N/mm and L4 15.3 N/mm) with both inspiratory and expiratory efforts. The increase was related to the respiratory effort and was greatest during maximum expiration (L2 24.9 N/mm and L4 23.9 N/mm). The results indicate that changes in trunk muscle activity and IAP with respiratory efforts modulate spinal stiffness. In addition, the diaphragm may augment spinal stiffness via attachment of its crural fibers to the lumbar vertebrae.  (+info)

Respiratory muscle strength training with nonrespiratory maneuvers. (8/562)

The diaphragm and abdominal muscles can be recruited during nonrespiratory maneuvers. With these maneuvers, transdiaphragmatic pressures are elevated to levels that could potentially provide a strength-training stimulus. To determine whether repeated forceful nonrespiratory maneuvers strengthen the diaphragm, four healthy subjects performed sit-ups and biceps curls 3-4 days/wk for 16 wk and four subjects served as controls. The maximal transdiaphragmatic pressure was measured at baseline and after 16 wk of training. Maximum static inspiratory and expiratory mouth pressures and diaphragm thickness derived from ultrasound were measured at baseline and 8 and 16 wk. After training, there were significant increases in diaphragm thickness [2.5 +/- 0.1 to 3.2 +/- 0.1 mm (mean +/- SD) (P < 0.001)], maximal transdiaphragmatic pressure [198 +/- 21 to 256 +/- 23 cmH2O (P < 0.02)], maximum static inspiratory pressure [134 +/- 22 to 171 +/- 16 cmH2O (P < 0.002)], maximum static expiratory pressure [195 +/- 20 to 267 +/- 40 cmH2O (P < 0.002)], and maximum gastric pressure [161 +/- 5 to 212 +/- 40 cmH2O (P < 0.03)]. These parameters were unchanged in the control group. We conclude that nonrespiratory maneuvers can strengthen the inspiratory and expiratory muscles in healthy individuals. Because diaphragm thickness increased with training, the increase in maximal pressures is unlikely due to a learning effect.  (+info)