External thoracic restriction, respiratory sensation, and ventilation during exercise in men. (49/12078)

Multiple factors may contribute to the dyspnea associated with restrictive ventilatory disease (RVD). Simple models that examine specific features of this problem are likely to provide insight into the mechanisms. Previous models of RVD utilizing elastic loads may not represent completely the impact on pulmonary and chest wall receptors derived from breathing at low thoracic volumes. The purpose of this study was to investigate the sensory consequences of breathing at low lung volumes induced by external thoracic restriction in an attempt to further elucidate the etiology of dyspnea in this setting. Ten men were studied, with and without an inelastic corset applied at residual volume (restriction resulted in mean reductions in vital capacity, functional residual capacity, residual volume, and forced expired volume in 1 s of 44, 31, 12.5, and 42%, respectively). During 10-min steady-state exercise tests (at a workload set to achieve approximately 65% maximum heart rate), restriction resulted in significant increases, compared with control, in minute ventilation (61 vs. 49 l/min), respiratory frequency (43 vs. 23 breaths/min), and visual analog scale measurements of respiratory discomfort (65 vs. 20 mm). Alveolar hyperventilation (end-tidal PCO2 = 39 vs. 44 Torr for control) and mild O2 desaturation (arterial blood O2 saturation = 93 vs. 95% for control) occurred. Hypoxemia, atelectasis, increased work and effort of breathing, or a decrease in the volume-related feedback from chest wall and/or lungs could be responsible for the increased dyspnea reported. External thoracic restriction provides a useful model to study mechanisms of dyspnea in RVD.  (+info)

Effect of a single bout of acute exercise on plasma human immunodeficiency virus RNA levels. (50/12078)

Acute exercise is known to activate the immune system and thus could lead to increased human immunodeficiency virus (HIV) replication. We sought to determine whether a single acute bout of exercise, similar to what people experience when starting an intensive exercise program, has a detrimental effect on plasma HIV RNA levels. Twenty-five patients with HIV infection performed one 15-min bout of acute exercise. Absolute neutrophil counts, serum creatine phosphokinase, and 72-h urinary 3-methylhistidine (a marker of muscle protein breakdown) were measured before and after the exercise, along with plasma HIV RNA levels. There were increases in neutrophil counts (P < 0.06), serum creatine phosphokinase (P < 0. 01), and urinary 3-methylhistidine (P < 0.01) in response to exercise, indicating a mild acute-phase response with muscle proteolysis. However, mean HIV RNA, which was elevated at baseline in 22 of the 25 subjects (mean of 4 x 10(5) +/- 0.7 x 10(5) copies/ml), did not increase during the week after exercise (P = 0. 12). Small changes in RNA were seen in the three subjects with initially undetectable HIV RNA, but the significance of these changes is unclear. Acute exercise does not have a deleterious effect on HIV replication in adults with high viral loads. Because regular exercise training has not been shown to activate the acute-phase response, the lack of increased viral loads in response to an acute exercise intervention suggests that exercise training is safe in people with HIV infection.  (+info)

Stimulation of myofibrillar synthesis by exercise is mediated by more efficient translation of mRNA. (51/12078)

Resistance exercises stimulate protein synthesis in human muscle, but the roles of changes in mRNA concentrations and changes in the efficiency of mRNA translation have not been defined. The present study was done to determine whether resistance exercise affects concentrations of total RNA, total mRNA, actin mRNA, or myosin heavy-chain mRNA (total and isoform specific). Eight subjects, 62-75 yr old, performed unilateral knee extensions at 80% of their one-repetition-maximum capacity on days 1, 3, and 6 of the study. On day 7, biopsies of exercised and nonexercised vastus lateralis muscles were obtained. Myofibrillar synthesis was determined by stable- isotope incorporation, and mRNA concentrations were determined by membrane hybridization and PCR-based methods. The exercise stimulated myofibrillar synthesis [30 +/- 6 (SE)%] without affecting RNA or mRNA concentrations. The effect of exercise on protein synthesis in individual subjects did not correlate with the effect on total RNA and mRNA concentrations. These data suggest that the stimulation of myofibrillar synthesis by resistance exercise is mediated by more efficient translation of mRNA.  (+info)

Physiological responses of exercised-fatigued individuals exposed to wet-cold conditions. (52/12078)

Thirteen healthy and fit men [age = 27 +/- 8 (SD) yr, height = 177 +/- 5 cm, mass = 75 +/- 7 kg, body fat = 14 +/- 5%, maximal O2 consumption = 51 +/- 4 ml. kg-1. min-1] participated in an experiment designed to test their thermoregulatory response to a challenging cold exposure after 5 h of demanding mixed exercise during which only water was consumed. Subjects expended 7,314 +/- 741 kJ on cycling, rowing, and treadmill-walking machines, performed 8,403 +/- 1,401 kg. m of mechanical work during resistance exercises, and completed 120 inclined sit-ups. Subjects then assumed a seated position in a 10 degrees C air environment while wearing shorts, T-shirt, rain hat, and neoprene gloves and boots. After 30 min the subjects were showered continuously with cold water ( approximately 920 ml/min at 10 degrees C) on their backs accompanied by a 6 km/h wind for up to 4 h. Blood samples were taken from the nondominant arm every 30 min during the exposure and assayed for energy metabolites, hormones, indexes of hydration, and neurotransmitters. Counterbalanced control trials without prior exercise were also conducted. Blood insulin was higher during the control trial, whereas values of glycerol, nonesterified fatty acids, beta-hydroxybutyrate, lactate, cortisol, free triiodothyronine, and thyroxine were lower. Three subjects lasted the maximum duration of 4.5 h for control and fatigue trials, with final rectal temperatures of 36.43 +/- 0.21 and 36.08 +/- 0.49 degrees C, respectively. Overall, the duration of 172 +/- 68 (SD) min for the fatigue trial was not significantly different from that of the control trial (197 +/- 72 min) and, therefore, was not affected by the preexposure exercise. Although duration was positively correlated to body fatness and shivering intensity, the latter was not correlated to any physical characteristic or the fitness level of the individual.  (+info)

Role of expiratory flow limitation in determining lung volumes and ventilation during exercise. (53/12078)

We determined the role of expiratory flow limitation (EFL) on the ventilatory response to heavy exercise in six trained male cyclists [maximal O2 uptake = 65 +/- 8 (range 55-74) ml. kg-1. min-1] with normal lung function. Each subject completed four progressive cycle ergometer tests to exhaustion in random order: two trials while breathing N2O2 (26% O2-balance N2), one with and one without added dead space, and two trials while breathing HeO2 (26% O2-balance He), one with and one without added dead space. EFL was defined by the proximity of the tidal to the maximal flow-volume loop. With N2O2 during heavy and maximal exercise, 1) EFL was present in all six subjects during heavy [19 +/- 2% of tidal volume (VT) intersected the maximal flow-volume loop] and maximal exercise (43 +/- 8% of VT), 2) the slopes of the ventilation (DeltaVE) and peak esophageal pressure responses to added dead space (e.g., DeltaVE/DeltaPETCO2, where PETCO2 is end-tidal PCO2) were reduced relative to submaximal exercise, 3) end-expiratory lung volume (EELV) increased and end-inspiratory lung volume reached a plateau at 88-91% of total lung capacity, and 4) VT reached a plateau and then fell as work rate increased. With HeO2 (compared with N2O2) breathing during heavy and maximal exercise, 1) HeO2 increased maximal flow rates (from 20 to 38%) throughout the range of vital capacity, which reduced EFL in all subjects during tidal breathing, 2) the gains of the ventilatory and inspiratory esophageal pressure responses to added dead space increased over those during room air breathing and were similar at all exercise intensities, 3) EELV was lower and end-inspiratory lung volume remained near 90% of total lung capacity, and 4) VT was increased relative to room air breathing. We conclude that EFL or even impending EFL during heavy and maximal exercise and with added dead space in fit subjects causes EELV to increase, reduces the VT, and constrains the increase in respiratory motor output and ventilation.  (+info)

Evaluation of pulmonary resistance and maximal expiratory flow measurements during exercise in humans. (54/12078)

To evaluate methods used to document changes in airway function during and after exercise, we studied nine subjects with exercise-induced asthma and five subjects without asthma. Airway function was assessed from measurements of pulmonary resistance (RL) and forced expiratory vital capacity maneuvers. In the asthmatic subjects, forced expiratory volume in 1 s (FEV1) fell 24 +/- 14% and RL increased 176 +/- 153% after exercise, whereas normal subjects experienced no change in airway function (RL -3 +/- 8% and FEV1 -4 +/- 5%). During exercise, there was a tendency for FEV1 to increase in the asthmatic subjects but not in the normal subjects. RL, however, showed a slight increase during exercise in both groups. Changes in lung volumes encountered during exercise were small and had no consistent effect on RL. The small increases in RL during exercise could be explained by the nonlinearity of the pressure-flow relationship and the increased tidal breathing flows associated with exercise. In the asthmatic subjects, a deep inspiration (DI) caused a small, significant, transient decrease in RL 15 min after exercise. There was no change in RL in response to DI during exercise in either asthmatic or nonasthmatic subjects. When percent changes in RL and FEV1 during and after exercise were compared, there was close agreement between the two measurements of change in airway function. In the groups of normal and mildly asthmatic subjects, we conclude that changes in lung volume and DIs had no influence on RL during exercise. Increases in tidal breathing flows had only minor influence on measurements of RL during exercise. Furthermore, changes in RL and in FEV1 produce equivalent indexes of the variations in airway function during and after exercise.  (+info)

Relationship between activity levels, aerobic fitness, and body fat in 8- to 10-yr-old children. (55/12078)

The relationships between children's activity, aerobic fitness, and fatness are unclear. Indirect estimates of activity, e.g., heart rate (HR) and recall, may mask any associations. The purpose of this study was to assess these relationships by using the Tritrac-R3D, a pedometer, and heart rate. Thirty-four children, ages 8-10 yr, participated in the study. The Tritrac and pedometer were worn for up to 6 days. HR was measured for 1 day. Activity measured by Tritrac or pedometer correlated positively to fitness in the whole group (Tritrac, r = 0.66; pedometer, r = 0.59; P < 0.01) and in boys and girls separately (P < 0.05) and correlated negatively to fatness in the whole group (r = -0.42, P < 0.05). In contrast, HR did not correlate significantly to fitness, and HR of >139 beats/min correlated positively to fatness in girls (r = 0.64, P < 0.05). This suggests that HR is misleading as a measure of activity. This study supports a positive relationship between activity and fitness and suggests a negative relationship between fatness and activity.  (+info)

Serum levels of total and free IGF-I and IGFBP-3 are increased and maintained in long-term training. (56/12078)

The goals of this study were to determine whether the long-term training regimens experienced by competitive collegiate swimmers would result in altered levels of total and free serum insulin-like growth factor I (IGF-I) as well as IGF-binding proteins (BP) IGFBP-1 and -3. Two male (Teams 1M and 2M) and one female (Team 2F) teams were studied at the start of training, after 2 mo of training, after 4 mo (2-4 mo had the highest volume of training), after 5 mo (near the end of tapering; only for Team 1M), and several days after training was over. For Team 1M, total IGF-I concentrations were increased by 76% after 4 mo and were subsequently maintained at this level. Total IGF-I responses were more variable for Teams 2F and 2M. Free IGF-I levels were increased nearly twofold for all teams at 2 mo and were maintained or increased further with subsequent training. Only the levels of free IGF-I for Team 1M returned to pretraining values after training had ended. Training had little effect on IGFBP-1 levels. For all teams, serum IGFBP-3 was elevated by 4 mo of training (for Team 2F it was increased at 2 mo) by 30-97% and remained at these higher levels thereafter. The ratio of total IGF-I to IGFBP-3 was not increased by training in any group. These data indicate that serum levels of total and free IGF-I and total IGFBP-3 can be increased with intense training and maintained with reduced training (tapering). The findings show that changes in free IGF-I levels are not accounted for by alterations in the total IGF-I/IGFBP-3 complex or in IGFBP-3 levels and indicate that there are other important determinants of free IGF-I.  (+info)