Glutamatergic projection to RVLM mediates suppression of reflex bradycardia by parabrachial nucleus. (65/4184)

We investigated the role of glutamatergic projection from the parabrachial nucleus (PBN) complex to the rostral ventrolateral medulla (RVLM) in the PBN-induced suppression of reflex bradycardia in adult Sprague-Dawley rats that were maintained under pentobarbital anesthesia. Under stimulus conditions that did not appreciably alter the baseline systemic arterial pressure and heart rate, electrical (10-s train of 0.5-ms pulses, at 10-20 microA and 10-20 Hz) or chemical (L-glutamate, 1 nmol) stimulation of the ventrolateral regions and Koelliker-Fuse (KF) subnucleus of the PBN complex significantly suppressed the reflex bradycardia in response to transient hypertension evoked by phenylephrine (5 micrograms/kg iv). The PBN-induced suppression of reflex bradycardia was appreciably reversed by bilateral microinjection into the RVLM of the N-methyl-D-aspartate (NMDA)-receptor antagonist MK-801 (500 pmol) or the non-NMDA-receptor antagonist 6-cyano-7-nitroquinoxaline-2, 3-dione (50 pmol). Anatomically, most of the retrogradely labeled neurons in the ventrolateral regions and KF subnucleus of the ipsilateral PBN complex after microinjection of fast blue into the RVLM were also immunoreactive to anti-glutamate antiserum. These results suggest that a direct glutamatergic projection to the RVLM from topographically distinct regions of the PBN complex may participate in the suppression of reflex bradycardia via activation of both NMDA and non-NMDA receptors at the RVLM.  (+info)

Generation of rhythmic patterns of activity by ventral interneurones in rat organotypic spinal slice culture. (66/4184)

1. In the presence of certain excitatory substances the rat isolated spinal cord generates rhythmic oscillations believed to be an in-built locomotor programme (fictive locomotion). However, it is unknown whether a long-term culture of the same tissue can express rhythmic activity. Such a simplified model system would provide useful data on the minimal circuitry involved and the cellular mechanisms mediating this phenomenon. For this purpose we performed patch clamp recording (under whole-cell voltage or current clamp conditions) from visually identified ventral horn interneurones of an organotypic slice culture of the rat spinal cord. 2. Ventral horn interneurones expressed rhythmic bursting when the extracellular [K+] was raised from 4 to 6-7 mM. Under voltage clamp this activity consisted of composite synaptic currents grouped into bursts lasting 0.9 +/- 0.5 s (2.8 +/- 1.5 s period) and was generated at network level as it was blocked by tetrodotoxin or low-Ca2+-high-Mg2+ solution and its periodicity was unchanged at different potential levels. 3. In current clamp mode bursting was usually observed as episodes comprising early depolarizing potentials followed by hyperpolarizing events with tight temporal patterning. Bursting was fully suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and reduced in amplitude and duration by N-methyl-D-aspartate (NMDA) receptor antagonism without change in periodicity. Extracellular field recording showed bursting activity over a wide area of the ventral horn. 4. Regular, rhythmic activity similar to that induced by K+ also appeared spontaneously in Mg2+-free solution. The much slower rhythmic pattern induced by strychnine and bicuculline was also accelerated by high-K+ solution. 5. The fast and regular rhythmic activity of interneurones in the spinal organotypic culture is a novel observation which suggests that the oversimplified circuit present in this culture is a useful model for investigating spinal rhythmic activity.  (+info)

Pressor response to compression of the ventrolateral medulla mediated by glutamate receptors. (67/4184)

The rostral ventrolateral medulla (RVLM) is considered a major center for the regulation of sympathetic and cardiovascular activities. Several clinical studies have indicated a possible causal relationship between neurovascular contact of the left RVLM and essential hypertension, and some investigators have suggested that the left RVLM is more sensitive to pulsatile compression than the right RVLM. Previously, we reported that pulsatile compression of the RVLM elevates arterial pressure by enhancing sympathetic outflow in rats; however, we have not investigated the laterality of the responses to the compression. In addition, it remains to be elucidated whether RVLM neurons are activated by compression and, if so, how they are activated. Therefore, we performed compression experiments in rats to investigate these issues. Pulsatile compression was performed on the unilateral RVLM with a pulsating probe in anesthetized and artificially ventilated rats. Pulsatile compression of the unilateral RVLM increased arterial pressure, heart rate, and sympathetic nerve activity. The pressor response to compression was inhibited significantly after local microinjection of glutamate receptor antagonists. Pulsatile compression of the RVLM increased Fos immunoreactivitiy, a marker of neuronal activation, within the nuclei of postsynaptic RVLM neurons. All results were observed symmetrically. The data indicate that the responses to pulsatile compression of the unilateral RVLM are similar on both sides. They also suggest that pulsatile compression of the RVLM increases sympathetic and cardiovascular activities by activating postsynaptic RVLM neurons through the stimulation of the local glutamate receptors in rats.  (+info)

SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity. (68/4184)

Accumulating preclinical data suggest that compounds that block the excitatory effect of glutamate on excitatory amino acid receptors may have neuroprotective effects and utility for the treatment of neurodegeneration after brain ischemia. In the present study, the in vitro and in vivo pharmacological properties of the novel glutamate antagonist SPD 502 [8-methyl-5(4-(N,N-dimethylsulfamoyl)phenyl)-6,7, 8,9,-tetrahydro-1H-pyrrolo[3,2-h]-isoquinoline-2, 3-dione-3-O-(4-hydroxybutyric acid-2-yl)oxime] are described. In binding studies, SPD 502 was shown to display selectivity for the [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-binding site (IC50 = 0.043 microM) compared with the [3H]kainate- (IC50 = 81 microM), [3H]cis-4-phosphonomethyl-2-piperidine carboxylic acid-(CGS 19755), and [3H]glycine-binding sites (IC50 > 30 microM) in rat cortical membranes. In an in vitro functional assay, SPD 502 blocked the AMPA-induced release of [3H]gamma-aminobutyric acid from cultured mouse cortical neurons in a competitive manner with an IC50 value of 0.23 microM. Furthermore, SPD 502 potently and selectively inhibited AMPA-induced currents in cortical neurons with an IC50 value of 0.15 microM. In in vivo electrophysiology, SPD 502 blocked AMPA-evoked spike activity in rat hippocampus after i.v. administration with an ED50 value of 6.1 mg/kg and with a duration of action of more than 1 h. Furthermore, SPD 502 increased the seizure threshold for electroshock-induced tonic seizures in mice at i.v doses of 40 mg/kg and higher. In the two-vessel occlusion model of transient forebrain ischemia in gerbils, SPD 502 (10 mg/kg bolus injection followed by a 10 mg/kg/h infusion for 2 h) resulted in a highly significant protection against the ischemia-induced damage in the hippocampal CA1 pyramidal neurons.  (+info)

Factors that enhance ethanol inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells. (69/4184)

The objective of this study was to identify factors that influence ethanol (EtOH) inhibition of the N-methyl-D-aspartate receptor (NMDAR) in primary cultured cerebellar granule cells. Several factors contributing to the inhibitory effects of EtOH on NMDAR function were assessed using both whole-cell and perforated patch-clamp recordings. The NMDAR subunit composition was examined by Western blot analysis using NR2 subunit-specific antibodies and pharmacological manipulation with the NR2B-specific antagonist infenprodil. Western blot analysis indicated that NMDAR subunit composition changed from a combination of NR2A and NR2B containing NMDARs to primarily NR2A with increasing days in vitro (DIV). Although the NR2B subunit was detectable until 21 DIV, there was a significant decrease in ifenprodil sensitivity after 7 DIV. EtOH sensitivity did not change with an increasing DIV. A high concentration of glycine reversed EtOH inhibition of steady-state, but not peak, NMDA-induced current during whole-cell recordings. Significant glycine reversal of effects of a low concentration of EtOH on peak current was observed under perforated patch-clamp conditions. A 30-s EtOH pretreatment significantly enhanced EtOH inhibition of NMDA-induced peak current. Collectively, these results indicate that EtOH sensitivity of the NMDAR in primary cultured cerebellar granule cells is not related to subunit composition nor ifenprodil sensitivity, involves a kinetic interaction with glycine, and can be enhanced by a slowly developing transduction mechanism that occurs within tens of seconds.  (+info)

Zinc and ifenprodil allosterically inhibit two separate polyamine-sensitive sites at N-methyl-D-aspartate receptor complex. (70/4184)

In this study, we investigated the hypothesis that inhibition of the N-methyl-D-aspartate (NMDA) receptor complex by zinc involves a polyamine-sensitive regulatory site. We found that the specific binding of the open channel ligand [3H]MK-801 to rat hippocampal membranes 1) was inhibited by low concentrations of Zn2+ (IC50 = 5.5 microM) by 65%. 2) This high-affinity component of inhibition was reversed by the polyamine spermine to an extent that could be reconciled with competitive interaction between Zn2+ and spermine. 3) Partial inhibition by Zn2+ was additive with partial inhibition by ifenprodil, an inhibitor of the NMDA receptor complex supposed to act at a polyamine-sensitive regulatory site, and 4) in membranes prepared from several other brain regions, inhibition of [3H]MK-801 binding by Zn2+ and by ifenprodil was either less than additive, or superadditive. Our observation that ifenprodil, at concentrations saturating its high-affinity component of inhibition, prevented spermine from reversing the inhibition by Zn2+ indicates that spermine did not increase [3H]MK-801 binding by competition with Zn2+ but rather via another polyamine regulatory site not sensitive to zinc but sensitive to ifenprodil. We conclude that Zn2+ reduces channel opening of the NMDA receptor complex by allosteric inhibition of a polyamine-sensitive regulatory site different from that inhibited by ifenprodil and that these two allosteric sites influence each other in a manner dependent on the brain region investigated. The different proportions of zinc/ifenprodil inhibition in different regions could reflect different percentages of various NMDA receptor subtypes.  (+info)

Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the cortico-nigral circuits. (71/4184)

The prelimbic/medial orbital areas (PL/MO) of the rat prefrontal cortex are connected to substantia nigra pars reticulata (SNR) through three main circuits: a direct nucleus accumbens (NAcc)-SNR pathway, an indirect NAcc-SNR pathway involving the ventral pallidum (VP) and the subthalamic nucleus (STN), and a disynaptic cortico-STN-SNR pathway. The present study was undertaken to characterize the effect of PL/MO stimulation on SNR cells and to determine the contribution of these different pathways. The major pattern of responses observed in the SNR was an inhibition preceded by an early excitation and followed or not by a late excitation. The inhibition resulted from the activation of the direct NAcc-SNR pathway because it disappeared after acute blockade of the glutamatergic cortico-striatal transmission by CNQX application into the NAcc. The late excitation resulted from the activation of the indirect NAcc-VP-STN-SNR pathway via a disinhibition of the STN because it disappeared after either CNQX application into the NAcc or blockade of the GABAergic striato-pallidal transmission by bicuculline application into the VP. The early excitation, which was markedly decreased after blockade of the cortico-STN transmission by CNQX application into the STN, resulted from the activation of the disynaptic cortico-STN-SNR pathway. Finally, the blockade of the cortico-STN-VP circuit by CNQX application into STN or VP modified the influence of the trans-striatal circuits on SNR cells. This study suggests that, in the prefrontal cortex-basal ganglia circuits, the trans-subthalamic pathways, by their excitatory effects, participate in the shaping of the inhibitory influence of the direct striato-nigral pathway on SNR neurons.  (+info)

Blockade of the acquisition of ethanol-induced conditioned place preference by N-methyl-D-aspartate receptor antagonists. (72/4184)

We have examined the influence of two different N-methyl-D-aspartate (NMDA) receptor antagonists on acquisition of the reinforcing properties of ethanol measured in the conditioned place preference (CPP) paradigm in rats. After receiving 15 daily injections of ethanol (0.5 g/kg, i.p.) before the conditioning trials, rats acquired the preference to the compartment paired with ethanol injections during conditioning. Both dizocilpine (0.1 mg/kg, i.p.), a non-competitive antagonist of the NMDA receptor, and L-701,324 (5 mg/kg, per os), an antagonist acting at the strychnine-insensitive glycine site of NMDA receptor complex, when co-administered repeatedly with ethanol, prevented the acquisition of ethanol-induced CPP. Dizocilpine alone provoked the development of CPP, having some intrinsic rewarding properties. In contrast, L-701,324 alone did not affect the CPP. These results suggest that the rewarding properties of ethanol could be, at least in part, due to its action at the NMDA receptor complex. Additionally, we can speculate that NMDA receptor antagonists can be useful in the treatment of ethanol dependence. Glycine receptor antagonists having no abuse potential might have advantages in terms of safety compared to non-competitive NMDA receptor antagonists.  (+info)