High intensity dependence of auditory evoked dipole source activity indicates decreased serotonergic activity in abstinent ecstasy (MDMA) users. (49/1669)

Neurotoxic damage of central serotonergic systems has been demonstrated in numerous animal studies after exposure to methylenedioxyamphetamines (ecstasy). A high intensity dependence of auditory evoked potentials and, particularly, of the tangential N1/P2 source activity has been associated with low levels of serotonergic neurotransmission in humans. We performed an auditory evoked potentials study in 28 abstinent recreational ecstasy users and two equally sized groups of cannabis users and nonusers. The ecstasy users exhibited an increase of the amplitude of the tangential N1/P2 source activity with higher stimulus intensities; whereas, both control groups failed to exhibit this feature. These data are in line with the hypothesis that abstinent ecstasy users present with diminished central serotonergic activity. This feature of information processing is probably related to the well-recognized neurotoxic potential of ecstasy. Our data indicate that recreational ecstasy use may cause long-term alterations in the function (and possibly structure) of the human brain.  (+info)

Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex. (50/1669)

This study investigated the tonotopic organization of pure-tone-evoked middle latency auditory evoked potentials (MAEPs) recorded at the auditory cortical surface in unanesthetized gerbils. Multielectrode array recording and multiple linear regression analysis of the MAEP demonstrated different degrees of tonotopic organization of early and late MAEP components. The early MAEP components P1 and N1 showed focal topography and clear dependence in location and size of cortical area covered on pure-tone frequency. The later components P2 and N2 showed a widespread topography which was largely unaffected in location and size of cortical area covered by pure-tone frequency. These results allow delimitation of the neural generators of the early and late MAEP components in terms of the spectral properties of functionally defined neural populations.  (+info)

Predicting vulnerability to acoustic injury with a noninvasive assay of olivocochlear reflex strength. (51/1669)

Permanent noise-induced damage to the inner ear is a major cause of hearing impairment, arising from exposures occurring during both work- and pleasure-related activities. Vulnerability to noise-induced hearing loss is highly variable: some have tough, whereas others have tender ears. This report documents, in an animal model, the efficacy of a simple nontraumatic assay of normal ear function in predicting vulnerability to acoustic injury. The assay measures the strength of a sound-evoked neuronal feedback pathway to the inner ear, the olivocochlear efferents, by examining otoacoustic emissions created by the normal ear, which can be measured with a microphone in the external ear. Reflex strength was inversely correlated with the degree of hearing loss after subsequent noise exposure. These data suggest that one function of the olivocochlear efferent system is to protect the ear from acoustic injury. This assay, or a simple modification of it, could be applied to human populations to screen for individuals most at risk in noisy environments.  (+info)

Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. (52/1669)

Investigations using hippocampal slices maintained in vitro have demonstrated that bursts of oscillatory field potentials in the gamma frequency range (30-80 Hz) are followed by a slower oscillation in the beta 1 range (12-20 Hz). In this study, we demonstrate that a comparable gamma-to-beta transition is seen in the human electroencephalogram (EEG) in response to novel auditory stimuli. Correlations between gamma and beta 1 activity revealed a high degree of interdependence of synchronized oscillations in these bands in the human EEG. Evoked (stimulus-locked) gamma oscillations preceded beta 1 oscillations in response to novel stimuli, suggesting that this may be analogous to the gamma-to-beta shift observed in vitro. Beta 1 oscillations were the earliest discriminatory responses to show enhancement to novel stimuli, preceding changes in the broad-band event-related potential (mismatch negativity). Later peaks of induced beta activity over the parietal cortex were always accompanied by an underlying gamma frequency oscillation as seen in vitro. A further analogy between in vitro and human recordings was that both gamma and beta oscillations habituated markedly after the initial novel stimulus presentation.  (+info)

Binaural interactions in primary auditory cortex of the awake macaque. (53/1669)

The functional organization of primary auditory cortex in non-primates is generally modeled as a tonotopic gradient with an orthogonal representation of independently mapped binaural interaction columns along the isofrequency contours. Little information is available regarding the validity of this model in the primate brain, despite the importance of binaural cues for sound localization and auditory scene analysis. Binaural and monaural responses of A1 to pure tone stimulation were studied using auditory evoked potentials, current source density and multiunit activity. Key findings include: (i) differential distribution of binaural responses with respect to best frequency, such that 74% of the sites exhibiting binaural summation had best frequencies below 2000 Hz; (ii) the pattern of binaural responses was variable with respect to cortical depth, with binaural summation often observed in the supragranular laminae of sites showing binaural suppression in thalamorecipient laminae; and (iii) dissociation of binaural responses between the initial and sustained action potential firing of neuronal ensembles in A1. These data support earlier findings regarding the temporal and spatial complexity of responses in A1 in the awake state, and are inconsistent with a simple orthogonal arrangement of binaural interaction columns and best frequency in A1 of the awake primate.  (+info)

Temporal discharge patterns evoked by rapid sequences of wide- and narrowband clicks in the primary auditory cortex of cat. (54/1669)

The present study investigated neural responses to rapid, repetitive stimuli in the primary auditory cortex (A1) of cats. We focused on two important issues regarding cortical coding of sequences of stimuli: temporal discharge patterns of A1 neurons as a function of inter-stimulus interval and cortical mechanisms for representing successive stimulus events separated by very short intervals. These issues were studied using wide- and narrowband click trains with inter-click intervals (ICIs) ranging from 3 to 100 ms as a class of representative sequential stimuli. The main findings of this study are 1) A1 units displayed, in response to click train stimuli, three distinct temporal discharge patterns that we classify as regions I, II, and III. At long ICIs nearly all A1 units exhibited typical stimulus-synchronized response patterns (region I) consistent with previously reported observations. At intermediate ICIs, no clear temporal structures were visible in the responses of most A1 units (region II). At short ICIs, temporal discharge patterns are characterized by the presence of either intrinsic oscillations (at approximately 10 Hz) or a change in discharge rate that was a monotonically decreasing function of ICI (region III). In some A1 units, temporal discharge patterns corresponding to region III were absent. 2) The boundary between regions I and II (synchronization boundary) had a median value of 39.8 ms ICI ([25%, 75%] = [20.4, 58. 8] ms ICI; n = 131). The median boundary between regions II and III was estimated at 6.3 ms ([25%, 75%] = [5.2, 9.7] ms ICI; n = 47) for units showing rate changes (rate-change boundary). 3) The boundary values between different regions appeared to be relatively independent of stimulus intensity (at modest sound levels) or the bandwidth of the clicks used. 4) There is a weak correlation between a unit's synchronization boundary and its response latency. Units with shorter latencies appeared to also have smaller boundary values. And 5) based on these findings, we proposed a two-stage model for A1 neurons to represent a wide range of ICIs. In this model, A1 uses a temporal code for explicitly representing long ICIs and a rate code for implicitly representing short ICIs.  (+info)

Auditory thalamus neurons during sleep: changes in frequency selectivity, threshold, and receptive field size. (55/1669)

The present study describes how the frequency receptive fields (RF) of auditory thalamus neurons are modified when the state of vigilance of an unanesthetized animal naturally fluctuates among wakefulness (W), slow-wave sleep (SWS), and paradoxical sleep (PS). Systematic quantification of several RF parameters-including strength of the evoked responses, response latency, acoustic threshold, shape of rate-level function, frequency selectivity, and RF size-was performed while undrugged, restrained guinea pigs presented spontaneous alternances of W, SWS, and PS. Data are from 102 cells recorded during W and SWS and from 53 cells recorded during W, SWS, and PS. During SWS, thalamic cells behaved as an homogeneous population: as compared with W, most of them (97/102 cells) exhibited decreased evoked spike rates. The frequency selectivity was enhanced and the RF size was reduced. In contrast during PS, two populations of cells were identified: one (32/53 cells) showed the same pattern of changes as during SWS, whereas the other (21/53 cells) expressed values of evoked spike rates and RF properties that did not significantly differ from those in W. These two populations were equally distributed in the different anatomical divisions of the auditory thalamus. Last, during both SWS and PS, the responses latency was longer and the acoustic threshold was higher than in W but the proportion of monotonic versus nonmonotonic rate-level functions was unchanged. During both SWS and PS, no relationship was found between the changes in burst percentage and the changes of the RF properties. These results point out the dual aspect of sensory processing during sleep. On the one hand, they show that the auditory messages sent by thalamic cells to cortical neurons are reduced both in terms of firing rate at a given frequency and in terms of frequency range. On the other hand, the fact that the frequency selectivity and the rate-level function are preserved suggests that the messages sent to cortical cells are not deprived of informative content, and that the analysis of complex acoustic sounds should remain possible. This can explain why, although attenuated, reactivity to biologically relevant stimuli is possible during sleep.  (+info)

Cortical processing of change detection: dissociation between natural vowels and two-frequency complex tones. (56/1669)

We compared magnetoencephalographic responses for natural vowels and for sounds consisting of two pure tones that represent the two lowest formant frequencies of these vowels. Our aim was to determine whether spectral changes in successive stimuli are detected differently for speech and nonspeech sounds. The stimuli were presented in four blocks applying an oddball paradigm (20% deviants, 80% standards): (i) /alpha/ tokens as deviants vs. /i/ tokens as standards; (ii) /e/ vs. /i/; (iii) complex tones representing /alpha/ formants vs. /i/ formants; and (iv) complex tones representing /e/ formants vs. /i/ formants. Mismatch fields (MMFs) were calculated by subtracting the source waveform produced by standards from that produced by deviants. As expected, MMF amplitudes for the complex tones reflected acoustic deviation: the amplitudes were stronger for the complex tones representing /alpha/ than /e/ formants, i.e., when the spectral difference between standards and deviants was larger. In contrast, MMF amplitudes for the vowels were similar despite their different spectral composition, whereas the MMF onset time was longer for /e/ than for /alpha/. Thus the degree of spectral difference between standards and deviants was reflected by the MMF amplitude for the nonspeech sounds and by the MMF latency for the vowels.  (+info)