Effect of bolus doses of alfentanil on the arousal response to intubation, as assessed by the auditory evoked response. (25/1669)

We have studied the effect of bolus doses of alfentanil on the arousal response to intubation, using the auditory evoked response (AER) of the electroencephalogram (EEG) in 45 anaesthetized patients. After induction of anaesthesia with propofol and 20 min of positive pressure ventilation via a laryngeal mask airway with 0.6 MAC of isoflurane and 50% nitrous-oxide in oxygen, patients received saline (control), or alfentanil 15 or 50 micrograms kg-1 before intubation. The early cortical AER before and after intubation in each group was measured and compared. After intubation, Pa amplitude increased in the saline group by 60% (95% CI +10 to +130), decreased in the low-dose alfentanil group by 11% (-38 to +29) and decreased further in the high-dose alfentanil group by 26% (-49 to +7). There were significant (P < 0.005) linear trends in the three group means for Pa amplitude. Similarly, Nb latency increased in the saline group by 30% (-2 to +73), decreased in the low-dose alfentanil group by 10% (-32 to +19) and decreased further in the high-dose alfentanil group by 19% (-39 to +7). There were significant (P = 0.02) linear trends in the three group means for Nb amplitude. Systolic and diastolic arterial pressures increased after intubation in the control group, and to a lesser extent in the low-dose alfentanil group, but decreased after high-dose alfentanil. Heart rate increased after intubation in the control group but decreased in both alfentanil groups, decreasing to a greater degree in the high-dose group. There were significant (P < 0.001) linear trends for all three haemodynamic variables in the three groups. We conclude that the increase in Pa amplitude after intubation was blocked by bolus administration of alfentanil and that this effect was dose dependent.  (+info)

Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. (26/1669)

BACKGROUND: Basic science studies at the neuronal systems level have indicated that gamma-range (30-50 Hz) neural synchronization may be a key mechanism of information processing in neural networks, reflecting integration of various features of an object. Furthermore, gamma-range synchronization is thought to depend on the glutamatergically mediated interplay between excitatory projection neurons and inhibitory neurons utilizing gamma-aminobutyric acid (GABA), which postmortem studies suggest may be abnormal in schizophrenia. We therefore tested whether auditory neural networks in patients with schizophrenia could support gamma-range synchronization. METHODS: Synchronization of the electroencephalogram (EEG) to different rates (20-40 Hz) of auditory stimulation was recorded from 15 patients with schizophrenia and 15 sex-, age-, and handedness-matched control subjects. The EEG power at each stimulation frequency was compared between groups. The time course of the phase relationship between each stimulus and EEG peak was also evaluated for gamma-range (40 Hz) stimulation. RESULTS: Schizophrenic patients showed reduced EEG power at 40 Hz, but not at lower frequencies of stimulation. In addition, schizophrenic patients showed delayed onset of phase synchronization and delayed desynchronization to the click train. CONCLUSIONS: These data provide new information on selective deficits in early-stage sensory processing in schizophrenia, a failure to support the entrainment of intrinsic gamma-frequency oscillators. The reduced EEG power at 40 Hz in schizophrenic patients may reflect a dysfunction of the recurrent inhibitory drive on auditory neural networks.  (+info)

Trial-to-trial variability and state-dependent modulation of auditory-evoked responses in cortex. (27/1669)

Recent experimental work has provided evidence that trial-to-trial variability of sensory-evoked responses in cortex can be explained as a linear superposition of random ongoing background activity and a stationary response. While studying single trial variability and state-dependent modulation of evoked responses in auditory cortex of ketamine/xylazine-anesthetized rats, we have observed an apparent violation of this model. Local field potential and unit spike trains were recorded and analyzed during different anesthesia depths-deep, medium, and light-which were defined by the pattern of ongoing cortical activity. Estimation of single trial evoked response was achieved by considering whole waveforms, rather than just one or two peak values from each wave. Principal components analysis was used to quantitatively classify waveforms on the basis of their time courses (i.e., shapes). We found that not only average response but also response variability is modulated by depth of anesthesia. Trial-to-trial variability is highest under medium levels of anesthesia, during which ongoing cortical activity exhibits rhythmic population bursting activity. By triggering the occurrence of stimuli from the spontaneously occurring burst events, we show that the observed variability can be accounted for by the background activity. In particular, the ongoing activity was found to modulate both amplitude and shape (including latency) of evoked local field potentials and evoked unit activity in a manner not predicted by linear superposition of background activity and a stereotyped evoked response. This breakdown of the linear model is likely attributable to rapid transitions between different levels of thalamocortical excitability (e.g., spike-wave discharges), although brain "state" is relatively fixed.  (+info)

Bilateral subthalamic nucleus stimulation improves frontal cortex function in Parkinson's disease. An electrophysiological study of the contingent negative variation. (28/1669)

Parkinson's disease involves impaired activation of frontal cortical areas, including the supplementary motor area and prefrontal cortex, resulting from impaired thalamocortical output of the basal ganglia. Electrophysiologically, such impaired cortical activation may be seen as a reduced amplitude of the contingent negative variation (CNV), a slow negative potential shift reflecting cognitive processes associated with the preparation and/or anticipation of a response. Surgical interventions aimed at increasing basal ganglia-thalamic outflow to the cortex, such as electrical stimulation of the subthalamic nucleus with chronically implanted electrodes, have been shown to be effective in improving the clinical symptoms of Parkinson's disease. This study examined changes in cortical activity, as reflected in the CNV, associated with bilateral subthalamic nucleus stimulation in Parkinson's disease. The CNV was recorded from 10 patients with Parkinson's disease when on and off bilateral subthalamic nucleus stimulation, and was compared with the CNV of 10 healthy control subjects. Without subthalamic nucleus stimulation, Parkinson's disease patients showed reduced CNV amplitudes over the frontal and frontocentral regions compared with control subjects. With bilateral subthalamic nucleus stimulation, however, CNV amplitudes over the frontal and frontocentral regions were significantly increased. Results therefore suggest that impaired cortical functioning in Parkinson's disease, particularly within the frontal and premotor areas, is improved by subthalamic nucleus stimulation.  (+info)

The functional neuroanatomy of target detection: an fMRI study of visual and auditory oddball tasks. (29/1669)

The neuronal response patterns that are required for an adequate behavioural reaction to subjectively relevant changes in the environment are commonly studied by means of oddball paradigms, in which occasional 'target' stimuli have to be detected in a train of frequent 'non-target' stimuli. The detection of such task-relevant stimuli is accompanied by a parietocentral positive component of the event-related potential, the P300. We performed EEG recordings of visual and auditory event-related potentials and functional magnetic resonance imaging (fMRI) when healthy subjects performed an oddball task. Significant increases in fMRI signal for target versus non-target conditions were observed in the supramarginal gyrus, frontal operculum and insular cortex bilaterally, and in further circumscribed parietal and frontal regions. These effects were consistent over various stimulation and response modalities and can be regarded as specific for target detection in both the auditory and the visual modality. These results therefore contribute to the understanding of the target detection network in human cerebral cortex and impose constraints on attempts at localizing the neuronal P300 generator. This is of importance both from a neurobiological perspective and because of the widespread application of the physiological correlates of target detection in clinical P300 studies.  (+info)

Gentamicin blocks both fast and slow effects of olivocochlear activation in anesthetized guinea pigs. (30/1669)

The medial olivocochlear (MOC) efferent system, which innervates cochlear outer hair cells, suppresses cochlear responses. MOC-mediated suppression includes both slow and fast components, with time courses differing by three orders of magnitude. Pharmacological studies in anesthetized guinea pigs suggest that both slow and fast effects on cochlear responses require an initial acetylcholine activation of alpha-9 nicotinic receptors on outer hair cells and that slow effects require additional intracellular events downstream from those mediating fast effects. Gentamicin, an aminoglycoside antibiotic, has been reported to block fast effects of sound-evoked OC activation following intramuscular injection in unanesthetized guinea pigs, without changing slow effects. In the present study, we show that electrically evoked fast and slow effects in the anesthetized guinea pig are both blocked by either intramuscular or intracochlear gentamicin, with similar time courses and/or dose-response curves. We suggest that sound-evoked slow effects in unanesthetized animals are fundamentally different from electrically evoked slow effects in anesthetized animals, and that the former may arise from effects of the lateral OC system.  (+info)

Role of L-type Ca(2+) channels in transmitter release from mammalian inner hair cells I. Gross sound-evoked potentials. (31/1669)

Intracochlear perfusion and gross potential recording of sound-evoked neural and hair cell responses were used to study the site of action of the L-type Ca(2+) channel blocker nimodipine in the guinea pig inner ear. In agreement with previous work nimodipine (1-10 microM) caused changes in both the compound auditory nerve action potential (CAP) and the DC component of the hair cell receptor potential (summating potential, or SP) in normal cochleae. For 20-kHz stimulation, the effect of nimodipine on the CAP threshold was markedly greater than the effect on the threshold of the negative SP. This latter result was consistent with a dominant action of nimodipine at the final output stage of cochlear transduction: either the release of transmitter from inner hair cells (IHCs) or the postsynaptic spike generation process. In animals in which the outer hair cells (OHCs) had been destroyed by prior administration of kanamycin, nimodipine still caused a large change in the 20-kHz CAP threshold, but even less change was observed in the negative SP threshold than in normal cochleae. When any neural contamination of the SP recording in kanamycin-treated animals was removed by prior intracochlear perfusion with TTX, nimodipine caused no significant change in SP threshold. Some features of the data also suggest a separate involvement of nimodipine-sensitive channels in OHC function. Perfusion of the cochlea with solutions containing Ni(2+) (100 microM) caused no measurable change in either CAP or SP. These results are consistent with, but do not prove, the notion that L-type channels are directly involved in controlling transmitter release from the IHCs and that T-type Ca(2+) channels are not involved at any stage of cochlear transduction.  (+info)

Acoustic and current-pulse responses of identified neurons in the dorsal cochlear nucleus of unanesthetized, decerebrate gerbils. (32/1669)

In an effort to establish relationships between cell physiology and morphology in the dorsal cochlear nucleus (DCN), intracellular single-unit recording and marking experiments were conducted on decerebrate gerbils using horseradish peroxidase (HRP)- or neurobiotin-filled micropipettes. Intracellular responses to acoustic (tone and broadband noise bursts) and electric current-pulse stimuli were recorded and associated with cell morphology. Units were classified according to the response map scheme (type I to type V). Results from 19 identified neurons, including 13 fusiform cells, 2 giant cells, and 4 cartwheel cells, reveal correlations between cell morphology of these neurons and their acoustic responses. Most fusiform cells (8/13) are associated with type III unit response properties. A subset of fusiform cells was type I/III units (2), type III-i units (2), and a type IV-T unit. The giant cells were associated with type IV-i unit response properties. Cartwheel cells all had weak acoustic responses that were difficult to classify. Some measures of membrane properties also were correlated with cell morphology but to a lesser degree. Giant cells and all but one fusiform cell fired only simple action potentials (APs), whereas all cartwheel cells discharged complex APs. Giant and fusiform cells all had monotonic rate versus current level curves, whereas cartwheel cells had nonmonotonic curves. This implies that inhibitory acoustic responses, resulting in nonmonotonic rate versus sound level curves, are due to local inhibitory interactions rather than strictly to membrane properties. A complex-spiking fusiform cell with type III unit properties suggests that cartwheel cells are not the only complex-spiking cells in DCN. The diverse response properties of the DCN's fusiform cells suggests that they are very sensitive to the specific complement of excitatory and inhibitory inputs they receive.  (+info)