A simple, selective method for freeze-fracturing spherical cells. (17/2647)

A simple and selective method for freeze-fracturing spherical cells is described. The cells are loaded into the holes of a thin nickel screen. A metal hat is applied to the cell monolayer and the whole assembly, hat-cells-screen, is frozen and then fractured by ripping the hat off. The fractured face on the screen is replicated. By varying the size of the screen holes and by applying the hat to either side of the screen, this method can selectively expose the E face (or the outer half of plasma membrane), the P face (or the inner half of the plasma membrane), or the cytoplasm of the cells. It also provides a means to produce fractures at a preselected area on the cell, if the cells can be loaded onto the screen in an oriented fashion.  (+info)

Crystal structure of carboxylase reaction-oriented ribulose 1, 5-bisphosphate carboxylase/oxygenase from a thermophilic red alga, Galdieria partita. (18/2647)

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1. 39) obtained from a thermophilic red alga Galdieria partita has the highest specificity factor of 238 among the Rubiscos hitherto reported. Crystal structure of activated Rubisco from G. partita complexed with the reaction intermediate analogue, 2-carboxyarabinitol 1,5-bisphosphate (2-CABP) has been determined at 2.4-A resolution. Compared with other Rubiscos, different amino residues bring the structural differences in active site, which are marked around the binding sites of P-2 phosphate of 2-CABP. Especially, side chains of His-327 and Arg-295 show the significant differences from those of spinach Rubisco. Moreover, the side chains of Asn-123 and His-294 which are reported to bind the substrate, ribulose 1,5-bisphosphate, form hydrogen bonds characteristic of Galdieria Rubisco. Small subunits of Galdieria Rubisco have more than 30 extra amino acid residues on the C terminus, which make up a hairpin-loop structure to form many interactions with the neighboring small subunits. When the structures of Galdieria and spinach Rubiscos are superimposed, the hairpin region of the neighboring small subunit in Galdieria enzyme and apical portion of insertion residues 52-63 characteristic of small subunits in higher plant enzymes are almost overlapped to each other.  (+info)

The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. (19/2647)

The hy1 mutants of Arabidopsis thaliana fail to make the phytochrome-chromophore phytochromobilin and therefore are deficient in a wide range of phytochrome-mediated responses. Because this defect can be rescued by feeding seedlings biliverdin IXalpha, it is likely that the mutations affect an enzyme that converts heme to this phytochromobilin intermediate. By a combination of positional cloning and candidate-gene isolation, we have identified the HY1 gene and found it to be related to cyanobacterial, algal, and animal heme oxygenases. Three independent alleles of hy1 contain DNA lesions within the HY1 coding region, and a genomic sequence spanning the HY1 locus complements the hy1-1 mutation. HY1 is a member of a gene family and is expressed in a variety of A. thaliana tissues. Based on its homology, we propose that HY1 encodes a higher-plant heme oxygenase, designated AtHO1, responsible for catalyzing the reaction that opens the tetrapyrrole ring of heme to generate biliverdin IXalpha.  (+info)

Detritus-dependent development of the microbial community in an experimental system: qualitative analysis by denaturing gradient gel electrophoresis. (20/2647)

Correlations between the biomass of phytoplankton and the biomass of bacteria and between the biomass of bacteria and the biomass of protozoans suggest that there is coupling between these compartments of the "microbial loop." To investigate this coupling on the species level, bacteria and protozoans from untreated lake water inocula were allowed to grow on detritus of the green alga Ankistrodesmus falcatus or the cyanobacterium Oscillatoria limnetica in continuous-flow systems for 1 month. Denaturing gradient gel electrophoresis (DGGE) of the 16S and 18S rRNA genes was used to monitor the development of the bacterial community structure and the eukaryotic community structure, respectively. Nonmetric multidimensional scaling of the DGGE profiles revealed the changes in the microbial community structure. This analysis showed that significantly different bacterial communities developed on the green algal detritus and on the cyanobacterial detritus. Although similar results were obtained for the eukaryotic communities, the differences were not significant. Hence, our findings indicate that the origin of detritus can affect the structure of at least the bacterial community. A phylogenetic analysis of 20 18S ribosomal DNA clones that were isolated from the continuous cultures revealed that many sequences were related to the sequences of bacterivorous protozoans (members of the Ciliophora, Rhizopoda, Amoeba, and Kinetoplastida). One clone grouped in a recently established clade whose previously described members are all parasites. The affiliations of about 20% of the clones could not be determined.  (+info)

Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. (21/2647)

Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 approximately 3, where Q10 is the proportional change with a 10 degrees C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.  (+info)

Development of a polymerase chain reaction diagnostic assay for Ceratomyxa shasta, a myxosporean parasite of salmonid fish. (22/2647)

A diagnostic procedure based on the polymerase chain reaction (PCR) was developed for the myxosporean parasite Ceratomyxa shasta. Three sets of oligonucleotide primers were designed to specifically amplify C. shasta ribosomal RNA genes and several parameters of the assay were tested and optimised. A simple protocol for the processing of fish tissue samples was also developed. In a single round, 20 microliters volume reaction the optimised procedure allows the detection of 50 fg of purified C. shasta genomic DNA, or 0.01 spore from a seeded fish intestine sample. This protocol is considerably faster, cheaper and more reliable than any previous diagnostic procedure for a myxosporean parasite, and can be an invaluable tool for the monitoring of early and/or subclinical C. shasta infections in wild and cultured salmon populations.  (+info)

Graviresponses of certain ciliates and flagellates. (23/2647)

Protozoa are eukaryotic cells and represent suitable model systems to study the mechanisms of gravity perception and signal transduction due to their clear gravity-induced responses (gravitaxis and gravikinesis). Among protists, parallel evolution for graviperception mechanisms have been identified: either sensing by distinct stato-organelles (e.g., the Muller vesicles of the ciliate Loxodes) or by sensing the density difference between the whole cytoplasm and the extracellular medium (as proposed for Paramecium and Euglena). These two models are supported by experiments in density-adjusted media, as the gravitaxis of Loxodes was not affected, whereas the orientation of Paramecium and Euglena was completely disturbed. Both models include the involvement of ion channels in the cell membrane. Diverse experiments gave new information on the mechanism of graviperception in unicellular systems, such as threshold values in the range of 10% of gravity, relaxation of the responses after removal of the stimulus, and no visible adaptation phenomena during exposure to hypergravity or microgravity conditions for up to 12 days.  (+info)

Freeze-fracture studies of the thecal membranes of Gonyaulax polyedra: circadian changes in the particles of one membrane face. (24/2647)

Intramembrane faces were visualized in the marine dinoflagellate Gonyaulax polyedra by the freeze-fracture technique, in order to test a prediction of a membrane model for circadian oscillations--i.e;, that membrane particle distribution and size change with time in the circadian cycle. Cells from each of four cell suspensions in continuous light (500 1x, 20-21 degrees C) were frozen, without fixation or cryoprotection, at four circadian times in a cycle. This paper reports findings concerning the membranes associated with the theca, particularly the cytoplasmic membrane and the membrane of the large peripheral vesicle. While the number and size distribution of the particles of the PF face of the cytoplasmic membrane were constant with time, those of the EF face of the peripheral vesicle doubled in number at 18 h circadian time as compared with 06 h. Particles of the 120-A size class, in particular, were more numerous at 12 and 18 h circadian time than at 00 and 06 h. While the finding does not provide definitive confirmation of the membrane hypothesis for circadian rhythms, it is consistent with this model. It is suggested that the peripheral vesicle may be the site of bioluminescence in Gonyaulax.  (+info)