Id helix-loop-helix proteins inhibit nucleoprotein complex formation by the TCF ETS-domain transcription factors. (1/455)

The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. Id proteins are thought to inhibit differentiation mainly through interaction with other HLH proteins and by blocking their DNA-binding activity. Members of the ternary complex factor (TCF) subfamily of ETS-domain proteins have key functions in regulating immediate-early gene expression in response to mitogenic stimulation. TCFs form DNA-bound complexes with the serum response factor (SRF) and are direct targets of MAP kinase (MAPK) signal transduction cascades. In this study we demonstrate functional interactions between Id proteins and TCFs. Ids bind to the ETS DNA-binding domain and disrupt the formation of DNA-bound complexes between TCFs and SRF on the c-fos serum response element (SRE). Inhibition occurs by disrupting protein-DNA interactions with the TCF component of this complex. In vivo, the Id proteins cause down-regulation of the transcriptional activity mediated by the TCFs and thereby block MAPK signalling to SREs. Therefore, our results demonstrate a novel facet of Id function in the coordination of mitogenic signalling and cell cycle entry.  (+info)

A differential requirement for the COOH-terminal region of the epidermal growth factor (EGF) receptor in amphiregulin and EGF mitogenic signaling. (2/455)

The epidermal growth factor receptor (EGFR) mediates the actions of a family of bioactive peptides that include epidermal growth factor (EGF) and amphiregulin (AR). Here we have studied AR and EGF mitogenic signaling in EGFR-devoid NR6 fibroblasts that ectopically express either wild type EGFR (WT) or a truncated EGFR that lacks the three major sites of autophosphorylation (c'1000). COOH-terminal truncation of the EGFR significantly impairs the ability of AR to (i) stimulate DNA synthesis, (ii) elicit Elk-1 transactivation, and (iii) generate sustained enzymatic activation of mitogen-activated protein kinase. EGFR truncation had no significant effect on AR binding to receptor but did result in defective GRB2 adaptor function. In contrast, EGFR truncation did not impair EGF mitogenic signaling, and in c'1000 cells EGF was able to stimulate the association of ErbB2 with GRB2 and SHC. Elk-1 transactivation was monitored when either ErbB2 or a truncated dominant-negative ErbB2 mutant (ErbB2-(1-813)) was overexpressed in cells. Overexpression of full-length ErbB2 resulted in a strong constitutive transactivation of Elk-1 in c'1000 but only slightly stimulated Elk-1 in WT or parental NR6 cells. Conversely, overexpression of ErbB2-(1-813) inhibited EGF-stimulated Elk-1 transactivation in c'1000 but not in WT cells. Thus, the cytoplasmic tail of the EGFR plays a critical role in AR mitogenic signaling but is dispensable for EGF, since EGF-activated truncated EGFRs can signal through ErbB2.  (+info)

Positive and negative regulatory elements in the upstream region of the rat Cu/Zn-superoxide dismutase gene. (3/455)

Cu/Zn-superoxide dismutase (SOD1) catalyses the dismutation of superoxide radicals and neutralizes the oxidative effects of various chemicals. Deletion analysis of the upstream region of the rat SOD1 gene revealed that the promoter contains a positive regulatory element (PRE) and a negative regulatory element (NRE), which encompass the regions from -576 to -412 and from -412 to -305 respectively from the site of initiation of transcription. These DNA elements showed enhancer and silencer activities respectively in the natural context and in a heterologous promoter system. Using an electrophoretic-mobility-shift assay and a supershift assay with a specific antibody, the cis-elements of the PRE and NRE were identified as binding sites for transcription factors Elk1 and YY1 (Ying-Yang 1) respectively. Consistent with the presumed roles of the PRE and NRE, Elk1 increased SOD1 gene transcription about 4-5-fold, whereas YY1 exerted a negative effect of about 6-fold. Mutations of the Elk1- and YY1-binding sites led to diminution and elevation respectively of transcriptional activities, both in the natural context and in heterologous promoter systems. These results suggest that the transcription factors Elk1 and YY1, binding in the PRE and NRE respectively, co-ordinate the expression of the SOD1 gene.  (+info)

NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells. (4/455)

IL-17 expression is restricted to activated T cells, whereas the IL-17R is expressed in a variety of cell types including intestinal epithelial cells. However, the functional responses of intestinal epithelial cells to stimulation with IL-17 are unknown. Moreover, the signal transduction pathways activated by the IL-17R have not been characterized. IL-17 induced NF-kappa B protein-DNA complexes consisting of p65/p50 heterodimers in the rat intestinal epithelial cell line IEC-6. The induction of NF-kappa B correlated with the induction of CXC and CC chemokine mRNA expression in IEC-6 cells. IL-17 acted in a synergistic fashion with IL-1 beta to induce the NF-kappa B site-dependent CINC promoter. Induction of the CINC promoter by IL-17 in IEC-6 cells was TNF receptor-associated factor-6 (TRAF6), but not TRAF2, dependent. Furthermore, IL-17 induction of the CINC promoter could be inhibited by kinase-negative mutants of NF-kappa B-inducing kinase and I kappa B kinase-alpha. In addition to activation of the NF-kappa B, IL-17 regulated the activities of extracellular regulated kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinases in IEC-6 cells. Whereas the IL-17-mediated activation of extracellular regulated kinase mitogen-activated protein kinases was mediated through ras, c-Jun N-terminal kinase activation was dependent on functional TRAF6. These data suggest that NF-kappa B-inducing kinase serves as the common mediator in the NF-kappa B signaling cascades triggered by IL-17, TNF-alpha, and IL-1 beta in intestinal epithelial cells.  (+info)

Structural organization of the human Elk1 gene and its processed pseudogene Elk2. (5/455)

In the ets gene family of transcription factors, ELK1 belongs to the subfamily of Ternary Complex Factors (TCFs) which bind to the Serum Response Element (SRE) in conjunction with a dimer of Serum Response Factors (SRFs). The primary structure of the human Elk1 gene was determined by genomic cloning. The gene structure of Elk1 spans 15.2 kb and consists of seven exons and six introns. The coding sequence resides on exons 3, 4, 5, 6 and 7. Sequencing of cDNA clones isolated from human hippocampus library revealed that the second exon was often skipped by an alternative splicing event. All introns commenced with nucleotides GT at the 5' boundary and ended with nucleotides AG at the 3' boundary, in agreement with the proposed consensus sequence for intron spliced donor and acceptance sites. Sequence inspection of the 5'-flanking region revealed the absence of a 'TATA' box and the presence of putative cis-acting regulatory elements such as Sp1, GATA-1, CCAAT, and c-Myb. Moreover, the sequence analysis of Elk2 locus on 14q32.3 confirmed that Elk2 gene corresponds to a processed pseudogene of Elk1 which has been reported between alpha 1 gene (IGHA1) and pseudo gamma gene (IGHGP) of immunoglobulin heavy chain. Furthermore, the results of Southern analysis using DNAs from human-mouse hybrid cell lines carrying a part of 14q32 region revealed that there is another locus hybridizing to Elk1 cDNA on 14q32.2 --> qter region in addition to Elk2 locus between IGHA1 and IGHGP loci.  (+info)

Stimulation of Elk1 transcriptional activity by mitogen-activated protein kinases is negatively regulated by protein phosphatase 2B (calcineurin). (6/455)

Cellular calcium (Ca2+) and the Ca2+-binding protein calmodulin (CaM) regulate the activities of Ca2+/CaM-dependent protein kinases and protein phosphatase 2B (calcineurin). Functional interactions between CaM kinases and mitogen-activated protein (MAP) kinases were described. In this report, we describe cross-talk between calcineurin and mitogen-activated protein kinase signaling. Calcineurin was found to specifically down-regulate the transcriptional activity of transcription factor Elk1, following stimulation of this activity by the ERK, Jun N-terminal kinase, or p38 MAP kinase pathways. Expression of constitutively activated calcineurin or activation of endogenous calcineurin by Ca2+ ionophore decreased the phosphorylation of Elk1 at sites that positively regulate its transcriptional activity. Calcineurin specifically dephosphorylates Elk1 at phosphoserine 383, a site whose phosphorylation by MAP kinases makes a critical contribution to the enhanced transcriptional activity of Elk1. The cross-talk between calcineurin and MAP kinases is of physiological significance as low doses of Ca2+ ionophore which by themselves are insufficient for c-fos induction can actually inhibit induction of c-fos expression by activators of MAP kinases. Thus through the effect of calcineurin on Elk1 phosphorylation, Ca2+ can have a negative effect on expression of Elk1 target genes. This mechanism explains why different levels of intracellular Ca2+ can result in very different effects on gene expression.  (+info)

Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. (7/455)

Mitogen-activated protein (MAP) kinase-mediated signalling to the nucleus is an important event in the conversion of extracellular signals into a cellular response. However, the existence of multiple MAP kinases which phosphorylate similar phosphoacceptor motifs poses a problem in maintaining substrate specificity and hence the correct biological response. Both the extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) subfamilies of MAP kinases use a second specificity determinant and require docking to their transcription factor substrates to achieve maximal substrate activation. In this study, we demonstrate that among the different MAP kinases, the MADS-box transcription factors MEF2A and MEF2C are preferentially phosphorylated and activated by the p38 subfamily members p38alpha and p38beta2. The efficiency of phosphorylation in vitro and transcriptional activation in vivo of MEF2A and MEF2C by these p38 subtypes requires the presence of a kinase docking domain (D-domain). Furthermore, the D-domain from MEF2A is sufficient to confer p38 responsiveness on different transcription factors, and reciprocal effects are observed upon the introduction of alternative D-domains into MEF2A. These results therefore contribute to our understanding of signalling to MEF2 transcription factors and demonstrate that the requirement for substrate binding by MAP kinases is an important facet of three different subclasses of MAP kinases (ERK, JNK, and p38).  (+info)

Activation of the 9E3/cCAF chemokine by phorbol esters occurs via multiple signal transduction pathways that converge to MEK1/ERK2 and activate the Elk1 transcription factor. (8/455)

Using primary fibroblasts in culture, we have investigated the signal transduction mechanisms by which phorbol esters, a class of tumor promoters, activate the 9E3 gene and its chemokine product the chicken chemotactic and angiogenic factor. This gene is highly stimulated by phorbol 12,13-dibutyrate (PDBu) via three pathways: (i) a small contribution through protein kinase C (the commonly recognized pathway for these tumor promoters), (ii) a contribution involving tyrosine kinases, and (iii) a larger contribution via pathways that can be interrupted by dexamethasone. All three of these pathways converge into the mitogen-activated protein kinases, MEK1/ERK2. Using a luciferase reporter system, we show that although both the AP-1 and PDRIIkB (a NFkappaB-like factor in chickens) response elements are capable of activation in these normal cells, regions of the 9E3 promoter containing them are unresponsive to PDBu stimulation. In contrast, we show for the first time that activation by PDBu occurs through a segment of the promoter containing Elk1 response elements; deletion and mutation of these elements abrogates 9E3/chicken chemotactic and angiogenic factor expression. Electrophoretic mobility shift assays and functional studies using PathDetect systems show that stimulation of the cells by phorbol esters leads to activation of the Elk1 transcription factor, which binds to its element in the 9E3 promoter.  (+info)