Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1. (1/50)

The newly isolated bacterial strain GP1 can utilize 1, 2-dibromoethane as the sole carbon and energy source. On the basis of 16S rRNA gene sequence analysis, the organism was identified as a member of the subgroup which contains the fast-growing mycobacteria. The first step in 1,2-dibromoethane metabolism is catalyzed by a hydrolytic haloalkane dehalogenase. The resulting 2-bromoethanol is rapidly converted to ethylene oxide by a haloalcohol dehalogenase, in this way preventing the accumulation of 2-bromoethanol and 2-bromoacetaldehyde as toxic intermediates. Ethylene oxide can serve as a growth substrate for strain GP1, but the pathway(s) by which it is further metabolized is still unclear. Strain GP1 can also utilize 1-chloropropane, 1-bromopropane, 2-bromoethanol, and 2-chloroethanol as growth substrates. 2-Chloroethanol and 2-bromoethanol are metabolized via ethylene oxide, which for both haloalcohols is a novel way to remove the halide without going through the corresponding acetaldehyde intermediate. The haloalkane dehalogenase gene was cloned and sequenced. The dehalogenase (DhaAf) encoded by this gene is identical to the haloalkane dehalogenase (DhaA) of Rhodococcus rhodochrous NCIMB 13064, except for three amino acid substitutions and a 14-amino-acid extension at the C terminus. Alignments of the complete dehalogenase gene region of strain GP1 with DNA sequences in different databases showed that a large part of a dhaA gene region, which is also present in R. rhodochrous NCIMB 13064, was fused to a fragment of a haloalcohol dehalogenase gene that was identical to the last 42 nucleotides of the hheB gene found in Corynebacterium sp. strain N-1074.  (+info)

Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways. (2/50)

The haloalkane-degrading bacteria Rhodococcus rhodochrous NCIMB13064, Pseudomonas pavonaceae 170, and Mycobacterium sp. strain GP1 share a highly conserved haloalkane dehalogenase gene (dhaA). Here, we describe the extent of the conserved dhaA segments in these three phylogenetically distinct bacteria and an analysis of their flanking sequences. The dhaA gene of the 1-chlorobutane-degrading strain NCIMB13064 was found to reside within a 1-chlorobutane catabolic gene cluster, which also encodes a putative invertase (invA), a regulatory protein (dhaR), an alcohol dehydrogenase (adhA), and an aldehyde dehydrogenase (aldA). The latter two enzymes may catalyze the oxidative conversion of n-butanol, the hydrolytic product of 1-chlorobutane, to n-butyric acid, a growth substrate for many bacteria. The activity of the dhaR gene product was analyzed in Pseudomonas sp. strain GJ1, in which it appeared to function as a repressor of dhaA expression. The 1,2-dibromoethane-degrading strain GP1 contained a conserved DNA segment of 2.7 kb, which included dhaR, dhaA, and part of invA. A 12-nucleotide deletion in dhaR led to constitutive expression of dhaA in strain GP1, in contrast to the inducible expression of dhaA in strain NCIMB13064. The 1, 3-dichloropropene-degrading strain 170 possessed a conserved DNA segment of 1.3 kb harboring little more than the coding region of the dhaA gene. In strains 170 and GP1, a putative integrase gene was found next to the conserved dhaA segment, which suggests that integration events were responsible for the acquisition of these DNA segments. The data indicate that horizontal gene transfer and integrase-dependent gene acquisition were the key mechanisms for the evolution of catabolic pathways for the man-made chemicals 1, 3-dichloropropene and 1,2-dibromoethane.  (+info)

Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. (3/50)

Chlorinated solvents, especially trichloroethylene (TCE), are the most widespread groundwater contaminants in the United States. Existing methods of pumping and treating are expensive and laborious. Phytoremediation, the use of plants for remediation of soil and groundwater pollution, is less expensive and has low maintenance; however, it requires large land areas and there are a limited number of suitable plants that are known to combine adaptation to a particular environment with efficient metabolism of the contaminant. In this work, we have engineered plants with a profound increase in metabolism of the most common contaminant, TCE, by introducing the mammalian cytochrome P450 2E1. This enzyme oxidizes a wide range of important pollutants, including TCE, ethylene dibromide, carbon tetrachloride, chloroform, and vinyl chloride. The transgenic plants had a dramatic enhancement in metabolism of TCE of up to 640-fold as compared with null vector control plants. The transgenic plants also showed an increased uptake and debromination of ethylene dibromide. Therefore, transgenic plants with this enzyme could be used for more efficient remediation of many sites contaminated with halogenated hydrocarbons.  (+info)

Paradoxical enhancement of the toxicity of 1,2-dibromoethane by O6-alkylguanine-DNA alkyltransferase. (4/50)

The presence of the DNA repair protein O(6)-alkylguanine-DNA alkyltransferase (AGT) paradoxically increases the mutagenicity and cytotoxicity of 1,2-dibromoethane (DBE) in Escherichia coli. This enhancement of genotoxicity did not occur when the inactive C145A mutant of human AGT (hAGT) was used. Also, hAGT did not enhance the genotoxicity of S-(2-haloethyl)glutathiones that mimic the reactive product of the reaction of DBE with glutathione, which is catalyzed by glutathione S-transferase. These experiments support a mechanism by which hAGT activates DBE. Studies in vitro showed a direct reaction between purified recombinant hAGT and DBE resulting in a loss of AGT repair activity and a formation of an hAGT-DBE conjugate at Cys(145). A 2-hydroxyethyl adduct was found by mass spectrometry to be present in the Gly(136)-Arg(147) peptide from tryptic digests of AGT reacted with DBE. Incubation of AGT with DBE and oligodeoxyribonucleotides led to the formation of covalent AGT-oligonucleotide complexes. These results indicate that DBE reacts at the active site of AGT to generate an S-(2-bromoethyl) intermediate, which forms a highly reactive half-mustard at Cys(145). In the presence of DNA, the DNA-binding function of AGT facilitates formation of DNA adducts. In the absence of DNA, the intermediate undergoes hydrolytic decomposition to form AGT-Cys(145)-SCH(2)CH(2)OH.  (+info)

Activation of dihaloalkanes by thiol-dependent mechanisms. (5/50)

Dihaloalkanes constitute an important group of chemicals because of their widespread use in industry and agriculture and their potential for causing toxicity and cancer. Chronic toxic effects are considered to depend upon bioactivation, either by oxidation or thiol conjugation. Considerable evidence links genotoxicity and cancer with glutathione conjugations reactions, and some aspects of the mechanisms have been clarified with 1,2-dihaloalkanes and dihalomethanes. Recently the DNA repair protein O6-alkylguanine transferase has been shown to produce cytotoxicity and genotoxicity by means of a thiol-dependent process with similarities to the glutathione reactions.  (+info)

Characterization of a mutagenic DNA adduct formed from 1,2-dibromoethane by O6-alkylguanine-DNA alkyltransferase. (6/50)

It has been proposed that the DNA repair protein O6-alkylguanine-DNA alkyltransferase increases the mutagenicity of 1,2-dibromoethane by reacting with it at its cysteine acceptor site to form a highly reactive half-mustard, which can then react with DNA (Liu, L., Pegg, A. E., Williams, K. M., and Guengerich, F. P. (2002) J. Biol. Chem. 277, 37920-37928). Incubation of Escherichia coli-expressed human alkyltransferase with 1,2-dibromoethane and single-stranded oligodeoxyribonucleotides led to the formation of covalent transferaseoligo complexes. The order of reaction determined was Gua>Thy>Cyt>Ade. Mass spectrometry analysis of the tryptic digest of the reaction product indicated that some of the adducts led to depurination with the release of the Gly136-Arg147 peptide cross-linked to a Gua at the N7 position, with the site of reaction being the active site Cys145 as established by chromatographic retention time and the fragmentation pattern determined by tandem mass spectrometry of a synthetic peptide adduct. The alkyltransferase-mediated mutations produced by 1,2-dibromoethane were predominantly Gua to Ade transitions but, in the spectrum of such rifampicin-resistant mutations in the RpoB gene, 20% were Gua to Thy transversions. The latter are likely to have arisen from the apurinic site generated from the Gua-N7 adduct. Support exists for an additional adduct/mutagenic pathway because evidence was obtained for DNA adducts other than at the Gua N7 atom and for mutations other than those attributable to depurination. Thus, chemical and biological evidence supports the existence of at least two alkyltransferase-dependent pathways for 1,2-dibromoethane-induced mutagenicity, one involving Gua N7-alkylation by alkyltransferase-S-CH2CH2Br and depurination, plus another as yet uncharacterized system(s).  (+info)

Mutation spectrum and sequence alkylation selectivity resulting from modification of bacteriophage M13mp18 DNA with S-(2-chloroethyl)glutathione. Evidence for a role of S-(2-N7-guanyl)ethyl)glutathione as a mutagenic lesion formed from ethylene dibromide. (7/50)

The major DNA adduct (greater than 95% total) resulting from the bioactivation of ethylene dibromide by conjugation with GSH is S-(2-(N7-guanyl)ethyl)GSH. The mutagenic potential of this adduct has been uncertain, however, because the observed mutagenicity might be caused by other adducts present at much lower levels, e.g. S-(2-N1-adenyl)ethyl)GSH. To assess the formation of other potential adducts, S-(2-(N3-deoxycytidyl)ethyl)GSH, S-(2-(O6-deoxyguanosyl)ethyl)GSH, and S-(2-(N2-deoxyguanosyl)ethyl)GSH were prepared and used as standards in the analysis of calf thymus DNA modified by treatment with [1,2-14C]ethylene dibromide and GSH in the presence of rat liver cytosol; only minor amounts (less than 0.2%) were found. A forward mutation assay in (repair-deficient) Salmonella typhimurium TA100 and sequence analysis were utilized to determine the type, site, and frequency of mutations in a portion of the lacZ gene resulting from in vitro modification of bacteriophage M13mp18 DNA with S-(2-chloroethyl)GSH, an analog of the ethylene dibromide-GSH conjugate. An adduct level of approximately 8 nmol (mg DNA)-1 resulted in a 10-fold increase in mutation frequency relative to the spontaneous level. The spectrum of spontaneous mutations was quite varied, but the spectrum of S-(2-chloroethyl)GSH-induced mutations consisted primarily of base substitutions of which G:C to A:T transitions accounted for 75% (70% of the total mutations). All available evidence implicates S-(2-(N7-guanyl)ethyl)GSH as the cause of these mutations inasmuch as the levels of the minor adducts are not consistent with the mutation frequency observed in this system. The sequence selectivity of alkylation was determined by treatment of end-labeled lac DNA fragments with S-(2-chloroethyl)GSH, cleavage of the DNA at adduct sites, and electrophoretic analysis. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. We suggest that the mechanism of mutagenesis involves DNA sequence-dependent alterations in the interaction of the polymerase with the (modified) template and incoming nucleotide.  (+info)

Analysis of fumigants and fumigant residues. (8/50)

The terms fumigant and fumigant residue are defined. Interrelationships between physically and chemically bound residues, storage environments, nature of the substrate and other influencing factors are outlined. Analytical methods include polarography by DME and RPE, titrimetry, spectrophotometry, and GC with microthermal conductivity, hydrogen flame ionization, electron capture, microcoulometric, thermionic, and flame photometric detector systems, with backup by enzymatic, radiometric, NAA and X-ray flourescence methods. Various aspects are illustrated with different fumigants used commercially. Supplementary methods to extend the power and usefulness of analytical methods in fumigant research are indicated.  (+info)