Characterization of an actin-myosin head interface in the 40-113 region of actin using specific antibodies as probes. (65/172)

Evidence for the participation of the 1-7 and 18-28 N-terminal sequences of actin at different steps of actin-myosin interaction process is well documented in the literature. Cross-linking of the rigor complex between filamentous actin and skeletal-muscle myosin subfragment 1 was accomplished by the carboxy-group-directed zero-length protein cross-linker, 1-ethyl-3-[3-(dimethylamino)propyl]carbodi-imide. After chaotropic depolymerization and thrombin digestion, which cleaves only actin, the covalent complex with Mr 100,000 was characterized by PAGE. The linkage was identified as being between myosin subfragment 1 (S-1) heavy chain and actin-(1-28)-peptide. The purified complex retained in toto its ability to combine reversibly with fresh filamentous actin, but showed a decrease in the Vmax. of actin-dependent Mg2(+)-ATPase. By using e.l.i.s.a., S-1 was observed to bind to coated monomeric actin or its 1-226 N-terminal peptide. This interaction strongly interfered with the binding of antibodies directed against the 95-113 actin sequence. Moreover, S-1 was able to bind with coated purified actin-(40-113)-peptide. Finally, antibodies directed against the 18-28 and 95-113 actin sequence, which strongly interfered with S1 binding, were unable to compete with each other. These results suggest that two topologically independent regions are involved in the actin-myosin interface: one located in the conserved 18-28 sequence and the other near residues 95-113, including the variable residue at position 89. Other experiments support the 'multisite interface model', where the two actin sites could modulate each other during S-1 interaction.  (+info)

Inactivation of Ca2(+)-, Na+K(+)-, and H+K(+)-ATPases with a carbodiimide derivative of ATP. (66/172)

The gamma-P adduct of ATP with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (ATP-EDC) was synthesized and incubated with the Ca-ATPase of sarcoplasmic reticulum with the result that time-dependent complete loss of the enzyme's activity occurred. The inactivation required calcium and magnesium while ATP had a protective effect. ATP-EDC incubation with the NaK-ATPase and HK-ATPase produced partial (greater than 50%) inactivation, but had no effect on myosin S1, pyruvate kinase and hexokinase, suggesting that this ATP analog is a specific inactivator of the so-called 'P-type' ATPases.  (+info)

SecA interacts with secretory proteins by recognizing the positive charge at the amino terminus of the signal peptide in Escherichia coli. (67/172)

SecA is an acidic, peripheral membrane protein involved in the translocation of secretory proteins across the cytoplasmic membrane. The direct interaction of SecA with secretory proteins was demonstrated by means of chemical cross-linking with 1-ethyl-3-(3-dimethylaminoprophyl)carbodiimide. OmpF-Lpp, a model secretory protein, carries either an uncleavable or cleavable signal peptide, and mutant secretory proteins derived from uncleavable OmpF-Lpp were used as translocation substrates. The interaction was SecA-specific. None of the control proteins, which are as acidic as SecA, was cross-linked with uncleavable OmpF-Lpp. The interaction was signal peptide-dependent. The interaction was increasingly enhanced as the number of positively charged amino acid residues at the amino-terminal region of the signal peptide was increased, irrespective of the species of amino acid residues donating the charge. Finally, parallelism was observed between the efficiency of interaction and that of translocation among mutant secretory proteins. It is suggested that precursors of secretory proteins interact with SecA to initiate the translocation reaction.  (+info)

Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis. (68/172)

 (+info)

Surface treatment of flexor tendon autograft and allograft decreases adhesion without an effect of graft cellularity: a pilot study. (69/172)

 (+info)

Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin. (70/172)

The cross-linking of the F-actin-caldesmon complex with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide in the presence of N-hydroxysuccinimide generated four major adducts which were identified on polyacrylamide gels. By cross-linking 3H-actin to 14C-caldesmon, these were found to represent 1:1 cross-linked complexes of actin and caldesmon displaying different electrophoretic mobilities. Tropomyosin did not noticeably affect the cross-linking process. The same four fluorescent species resulting from the cross-linking of caldesmon to F-actin labeled with N-[7-(dimethylamino)-4-methyl-3-coumarinyl]maleimide were subjected separately to partial cleavages with hydroxylamine or cyanogen bromide. These treatments yielded fluorescent 41- and 37-kDa fragments, respectively, from each cross-linked entity indicating unambiguously that caldesmon was cross-linked only to the NH2-terminal actin stretch of residues 1-12. This region is also known to serve for the carbodiimide-mediated cross-linking of the myosin subfragment-1 heavy chain (Sutoh, K. (1982) Biochemistry 21, 3654-3661). A covalent caldesmon-F-actin conjugate containing a protein molar ratio close to 1:19 was isolated following dissociation of uncross-linked caldesmon. It showed a low level of activation of the ATPase activity of skeletal myosin subfragment-1, and the binding of Ca2(+)-calmodulin to the derivative did not cause the reversal of the ATPase inhibition. In contrast, the reversible binding of caldesmon to F-actin cross-linked to myosin subfragment-1 did not inhibit the accelerated ATPase of the complex. The overall data point to the dual involvement of the actin's NH2 terminus in the inhibitory binding of caldesmon and in actomyosin interactions in the presence of ATP.  (+info)

Covalent cross-linking of single fibers from rabbit psoas increases oscillatory power. (71/172)

Single fibers from chemically skinned rabbit psoas muscle were treated with 1-ethyl-3-[3-dimethyl-amino)proyl]-carbodiimide (EDC) at 20 degrees C after rigor was induced. A 22-min treatment resulted in 18% covalent cross-linking between myosin heads and the thin filament as determined by stiffness measurements. This treatment also results in covalent cross-linking among rod portions of myosin molecules in the backbone of the thick filament. The fibers thus prepared are stable and do not dissolve in solutions at ionic strengths as high as 1,000 mM. The preparation was subjected to sinusoidal analysis, and the resulting complex modulus data were analyzed in terms of three exponential processes, (A), (B), and (C). Oscillatory work (process B) was much greater in the cross-linked fibers than in untreated ones in activating solutions of physiological ionic strength (200 mM); this difference was attributed to the decline of process (A) with EDC treatment. Consequently, the Nyquist plot of the EDC-treated preparation exhibited an insect-type response. We conclude that, under these conditions, both cross-linked and non-cross-linked myosin heads contribute to the production of oscillatory power. The cross-linked preparations also exhibited oscillatory work in high ionic strength (500-1,000 mM) solutions, indicating that cross-linked myosin heads are capable of utilizing ATP to produce work. We conclude that process (A) does not relate to an elementary step in a cross-bridge cycle, but it may relate to dynamics outside the cross-bridge such as filament sliding or sarcomere rearrangement.  (+info)

Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5). (72/172)

 (+info)