Identification of the folate binding sites on the Escherichia coli T-protein of the glycine cleavage system. (1/172)

T-protein is a component of the glycine cleavage system and catalyzes the tetrahydrofolate-dependent reaction. To determine the folate-binding site on the enzyme, 14C-labeled methylenetetrahydropteroyltetraglutamate (5,10-CH2-H4PteGlu4) was enzymatically synthesized from methylenetetrahydrofolate (5, 10-CH2-H4folate) and [U-14C]glutamic acid and subjected to cross-linking with the recombinant Escherichia coli T-protein using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, a zero-length cross-linker between amino and carboxyl groups. The cross-linked product was digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase high performance liquid chromatography. Amino acid sequencing of the labeled peptides revealed that three lysine residues at positions 78, 81, and 352 were involved in the cross-linking with polyglutamate moiety of 5, 10-CH2-H4PteGlu4. The comparable experiment with 5,10-CH2-H4folate revealed that Lys-81 and Lys-352 were also involved in cross-linking with the monoglutamate form. Mutants with single or multiple replacement(s) of these lysine residues to glutamic acid were constructed by site-directed mutagenesis and subjected to kinetic analysis. The single mutation of Lys-352 caused similar increase (2-fold) in Km values for both folate substrates, but that of Lys-81 affected greatly the Km value for 5,10-CH2-H4PteGlu4 rather than for 5,10-CH2-H4folate. It is postulated that Lys-352 may serve as the primary binding site to alpha-carboxyl group of the first glutamate residue nearest the p-aminobenzoic acid ring of 5,10-CH2-H4folate and 5,10-CH2-H4PteGlu4, whereas Lys-81 may play a key role to hold the second glutamate residue through binding to alpha-carboxyl group of the second glutamate residue.  (+info)

Structural changes in the actin-myosin cross-bridges associated with force generation induced by temperature jump in permeabilized frog muscle fibers. (2/172)

Structural changes induced by Joule temperature jumps (T-jumps) in frog muscle fibers were monitored using time-resolved x-ray diffraction. Experiments made use of single, permeabilized fibers that were fully activated after slight cross-linking with 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide to preserve their structural order. After T-jumps from 5-6 to approximately 17 degrees C and then on to approximately 30 degrees C, tension increased by a factor of 1.51 and 1.84, respectively, whereas fiber stiffness did not change with temperature. The tension rise was accompanied by a decrease in the intensity of the (1, 0) equatorial x-ray reflection by 15 and 26% (at approximately 17 and approximately 30 degrees C) and by an increase in the intensity of the M3 myosin reflection by 20% and 41%, respectively. The intensity of the (1,1) equatorial reflection increased slightly. The peak of the intensity on the 6th actin layer line shifted toward the meridian with temperature. The intensity of the 1st actin layer line increased from 12% (of its rigor value) at 5-6 degrees C to 36% at approximately 30 degrees C, so that the fraction of the cross-bridges labeling the actin helix estimated from this intensity increased proportionally to tension from approximately 35% at 5-6 degrees C to approximately 60% at approximately 30 degrees C. This suggests that force is generated during a transition of nonstereo-specifically attached myosin cross-bridges to a stereo-specific binding state.  (+info)

Strain variation in autoimmunity: attempted tolerization of DA rats results in the induction of experimental autoimmune encephalomyelitis. (3/172)

This paper reports that DA rats develop experimental autoimmune encephalomyelitis (EAE) when immunized with encephalitogenic myelin basic protein (MBP) peptide (MBP63-81) in IFA. In contrast, most rodent strains are tolerized by this procedure. Doses as low as 5 micrograms peptide + IFA induced EAE in DA rats. Lewis (LEW) rats did not develop EAE, even after immunization with 100 micrograms encephalitogenic peptide (MBP68-86) + IFA, but were rendered tolerant to EAE. DA rat T cells proliferated to peptide, and proliferation was inhibited by CTLA4Ig, and by anti-B7.1 and anti-B7. 2 mAbs. This indicates that the ease of induction of EAE in this strain does not reflect a decreased requirement for T cell costimulation through the B7/CD28 costimulatory pathway. The inhibitory effect of CTLA4Ig was abrogated in the presence of anti-TGF-beta-neutralizing Ab. An encephalitogenic DA T cell line expressed mRNA for the Th1 cytokines IFN-gamma and TNF-alpha, as well as IL-10, and secreted these cytokines. In contrast, a T cell line from peptide + IFA-immunized LEW rats (which did not develop EAE) failed to secrete these cytokines. Although this line did not express TNF-alpha or IL-10 mRNA, IFN-gamma mRNA was detected, suggesting posttranscriptional regulation of IFN-gamma expression. Attempts to induce unresponsiveness in DA rats with encephalitogenic peptide-coupled splenocytes were also unsuccessful.  (+info)

Subunit interactions in the clathrin-coated vesicle vacuolar (H(+))-ATPase complex. (4/172)

The vacuolar (H(+))-ATPases (or V-ATPases) are structurally related to the F(1)F(0) ATP synthases of mitochondria, chloroplasts and bacteria, being composed of a peripheral (V(1)) and an integral (V(0)) domain. To further investigate the arrangement of subunits in the V-ATPase complex, covalent cross-linking has been carried out on the V-ATPase from clathrin-coated vesicles using three different cross-linking reagents. Cross-linked products were identified by molecular weight and by Western blot analysis using polyclonal antibodies raised against individual V-ATPase subunits. In the intact V(1)V(0) complex, evidence for cross-linking of subunits C and E, D and F, as well as E and G by disuccinimidyl glutarate was obtained, while in the free V(1) domain, cross-linking of subunits H and E was also observed. Subunits C and E as well as D and E could be cross-linked by 1-ethyl-3-(dimethylaminopropyl)carbodiimide, while subunits a and E could be cross-linked by 4-(N-maleimido)benzophenone. It was further demonstrated that it is possible to treat the V-ATPase with potassium iodide and MgATP in such a way that while subunits A, B, and H are nearly quantitatively removed, significant amounts of subunits C, D, E, and F remain attached to the membrane, suggesting that one or more of these latter subunits are in contact with the V(0) domain. In addition, treatment of the V-ATPase with cystine, which modifies Cys-254 of the catalytic A subunit, results in dissociation of subunit H, suggesting communication between the catalytic nucleotide binding site and subunit H. Finally, the stoichiometry of subunits F, G, and H were determined by quantitative amino acid analysis. Based on these and previous observations, a new structural model of the V-ATPase from clathrin-coated vesicles is proposed.  (+info)

Characterization of exo-(1,4)-alpha glucan lyase from red alga Gracilaria chorda. Activation, inactivation and the kinetic properties of the enzyme. (5/172)

Exo-(1,4)-alpha glucan lyase (GLase) was purified from a red alga Gracilaria chorda. The enzyme was activated 1.3-fold in the presence of Ca(2+) and Cl(-) ions. The ions also stabilized the enzyme increasing the temperature of its maximum activity from 45 degrees C to 50 degrees C. GLase was inactivated by chemical modification with carbodiimide and a carboxyl group of the enzyme was shown essential to the lyase activity. A tryptophanyl residue(s) was also shown to be important for the activity and was probably involved in substrate binding. K(m) values of the enzyme were 2.3 mM for maltose, 0.4 mM for maltotriose and 0.1 mM for maltooligosaccharides of degree of polymerization (dp) 4-7, and the k(0) values for the oligosaccharides were similar (42-53 s(-1)). The analysis of these kinetic parameters showed that the enzyme has four subsites to accommodate oligosaccharides. The subsite map of GLase was unique, since subsite 1 and subsite 2 have large positive and small negative affinities, respectively. The subsite map of this type has not been found in other enzymes with exo-action on alpha-1,4-glucan. The K(m) and k(0) values for the polysaccharides were lower (0.03 mM) and higher (60-100 s(-1)), respectively, suggesting the presence of another affinity site specific to the polysaccharides.  (+info)

Differential susceptibility of human T(h)1 versus T(h) 2 cells to induction of anergy and apoptosis by ECDI/antigen-coupled antigen-presenting cells. (6/172)

Antigen-coupled antigen-presenting cells (APC) serve as potent tolerogens for inhibiting immune responses in vivo and in vitro, apparently by providing an antigen-specific signal through the TCR in the absence of co-stimulation. Although this approach has been well studied in rodents, little is known about its effects on human T cells. We evaluated the specificity and mechanisms of tolerization of human T cells in vitro using monocyte-enriched adherent cells that were pulsed with antigen and treated with the cross-linker, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (ECDI). Autologous antigen-coupled APC selectively tolerized T cells of the T(h)1 but not T(h)2 lineage through a mechanism that involved both antigen-specific and antigen-non-specific elements. The tolerization process was dependent on the ECDI and antigen concentration, and the coupling time, and was reflected by initial up-regulation of CD25. However, upon re-stimulation with fresh APC and antigen, tolerized T(h)1 cells failed to proliferate or to produce T(h)1 cytokine message or secreted protein, had decreased expression of CD25, CD28 and B7 and increased expression of MHC class II molecules, and demonstrated an enhanced commitment to apoptosis. T(h)1 cell tolerization could be prevented by adding anti-CD28 antibody, IL-2 or untreated APC at the same time as the ECDI/antigen-coupled APC, or reversed by adding anti-CD28 antibody or IL-2 upon re-stimulation with fresh APC plus antigen. Thus, the tolerizing effect of ECDI/antigen-coupled APC on human T(h)1 cells appears to involve a reversible anergy mechanism leading to apoptosis, whereby the targeted T cells receive full or partial activation through the TCR, without coordinate co-stimulation. These data suggest dichotomous signaling requirements for inactivating cells of the T(h)1 and T(h)2 lineages that may have important implications for treatment of T(h)1-mediated autoimmune or inflammatory diseases.  (+info)

The importance of carboxyl groups on the lumenal side of the membrane for the function of the Ca(2+)-ATPase of sarcoplasmic reticulum. (7/172)

The conventional model for transport of Ca(2+) by the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum (SR) involves a pair of binding sites for Ca(2+) that change upon phosphorylation of the ATPase from being high affinity and exposed to the cytoplasm to being low affinity and exposed to the lumen. However, a number of recent experiments suggest that in fact transport involves two separate pairs of binding sites for Ca(2+), one pair exposed to the cytoplasmic side and the other pair exposed to the lumenal side. Here we show that the carbodiimide 1-ethyl-3-[3-(dimethylamino)-propyl] carbodiimide (EDC) is membrane-impermeable, and we use EDC to distinguish between cytoplasmic and lumenal sites of reaction. Modification of the Ca(2+)-ATPase in sealed SR vesicles with EDC leads to loss of ATPase activity without modification of the pair of high affinity Ca(2+)-binding sites. Modification of the purified ATPase in unsealed membrane fragments was faster than modification in SR vesicles, suggesting the presence of more quickly reacting lumenal sites. This was confirmed in experiments measuring EDC modification of the ATPase reconstituted randomly into sealed lipid vesicles. Modification of sites on the lumenal face of the ATPase led to loss of the Ca(2+)-induced increase in phosphorylation by P(i). It is concluded that carboxyl groups on the lumenal side of the ATPase are involved in Ca(2+) binding to the lumenal side of the ATPase and that modification of these sites leads to loss of ATPase activity. The presence of MgATP or MgADP leads to faster inhibition of the ATPase by EDC in unsealed membrane fragments than in sealed vesicles, suggesting that binding of MgATP or MgADP to the ATPase leads to a conformational change on the lumenal side of the membrane.  (+info)

Interaction of myosin with F-actin: time-dependent changes at the interface are not slow. (8/172)

The kinetics of formation of the actin-myosin complex have been reinvestigated on the minute and second time scales in sedimentation and chemical cross-linking experiments. With the sedimentation method, we found that the binding of the skeletal muscle myosin motor domain (S1) to actin filament always saturates at one S1 bound to one actin monomer (or two S1 per actin dimer), whether S1 was added slowly (17 min between additions) or rapidly (10 s between additions) to an excess of F-actin. The carbodiimide (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, EDC)-induced cross-linking of the actin-S1 complex was performed on the subsecond time scale by a new approach that combines a two-step cross-linking protocol with the rapid flow-quench technique. The results showed that the time courses of S1 cross-linking to either of the two actin monomers are identical: they are not dependent on the actin/S1 ratio in the 0.3-20-s time range. The overall data rule out a mechanism by which myosin rolls from one to the other actin monomer on the second or minute time scales. Rather, they suggest that more subtle changes occur at the actomyosin interface during the ATP cycle.  (+info)