Ovarian steroids regulate 24p3 expression in mouse uterus during the natural estrous cycle and the preimplantation period. (41/2639)

We examined 24p3 expression in the mouse uterus at various stages of the natural estrous cycle and during the preimplantation period. The level of 24p3 mRNA appeared intensively in proestrus and estrus, then declined sharply from metestrus to diestrus. Consistent with this observation, 24p3 protein was abundant in proestrus, decreased from estrus to metestrus and declined to a very low level in diestrus. The uterine 24p3 expression closely overlapped with the estradiol (E2) surge in proestrus and estrus but it was suppressed when progesterone (P4) rose to a high level during the reproductive cycle. Neither the protein nor its message was detected in the uteri of immature mice or ovariectomized adult animals. While an injection of P4 to these animals was unable to initiate uterine 24p3 expression, administration of estrogenic steroids to these animals markedly stimulated the gene expression. Treatment of these animals with E2 together with P4, on the other hand, did not stimulate the gene expression. In pregnant animals (day 1 (D1)=day of vaginal plug), 24p3 mRNA remained at a high level on D1 and D2 but dropped to an almost undetectable level on D3 and D4. This was accompanied by a decrease in 24p3 protein from D1 to D2 and a decline in the protein to undetectable levels from D3 to D4. The staining patterns of both the immunohistochemical localization of 24p3 protein and in situ hybridization for the detection of 24p3 mRNA in the uterine sections showed that 24p3 expression took place mainly in the luminal and glandular epithelial cells of the endometrium. This together with our previous observation that 24p3 protein is found in uterine luminal fluid indicates that the protein is secreted primarily from these cells to their respective luminal surfaces during proestrus and estrus.  (+info)

Induction of estrus in grouped female mice (Mus domesticus) by synthetic analogues of preputial gland constituents. (42/2639)

Two major volatile constituents of the male mouse preputial gland, E,E-alpha-farnesene and E-beta-farnesene, were examined for their role in inducing estrous cycles in grouped female mice. The results indicated that the mixture of the farnesenes was as effective as the homogenate of the intact preputial gland, while the extract of the castrate preputial tissue did not show a pronounced response.  (+info)

Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. (43/2639)

To determine whether a sex difference exists in the production of hippocampal cells during adulthood, we examined proliferating cells and their progeny in adult rats using the thymidine analog bromodeoxyuridine (BrdU) combined with immunohistochemistry for markers of neurons and glia. Additionally, to determine whether ovarian hormones affect cell proliferation, we examined the numbers of BrdU-labeled cells at different estrous cycle stages and after ovarian steroid manipulation. Stereological analyses of the numbers of BrdU-labeled cells revealed that females produced more cells than males in the dentate gyrus but not in the subventricular zone. The production of new hippocampal cells in females appears to be affected by ovarian hormone levels; ovariectomy diminished the number of BrdU-labeled cells, an effect reversed by estrogen replacement. A natural fluctuation in cell proliferation was also noted; females produced more cells during proestrus (when estrogen levels are highest) compared with estrus and diestrus. Many of these cells acquired neuronal characteristics, including the formation of dendrites and expression of Turned-On-After-Division 64 kDa, a marker of immature granule neurons, and the calcium-binding protein calbindin, a marker of mature granule neurons. However, examination of the numbers of pyknotic cells and the numbers of BrdU-labeled cells at longer survival times revealed that many new cells in the dentate gyrus eventually degenerate. Consistently the number of labeled cells in females is no longer higher than that observed in males by 2 weeks after the last BrdU injection. These findings suggest that estrogen-enhanced cell proliferation during proestrus results in more immature neurons in the hippocampal formation of females compared with males and present the possibility that these new cells exert an important influence on hippocampal function.  (+info)

Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues. (44/2639)

The SOX genes define a family of transcriptional regulators whose diverse patterns and tightly controlled temporal profiles of expression suggest that they play key roles in determination of cell fate during development. One of the family members, Sox4, is expressed in the gonads of adult mice, but expression in the reproductive tissues has not been studied. As previous studies in this laboratory had shown that the SOX4 gene was regulated by ovarian hormones in breast cancer cells, murine Sox4 expression was analyzed in the reproductive tissues of mice by Northern blot analysis and ribonuclease protection assays. Sox4 mRNA expression was detected in the uterus and, at a lower level, in the mammary glands of pubertal and adult mice. Expression was modulated in the uterus of intact mice at various stages of the estrous cycle and was reduced by estradiol treatment of ovariectomized mice. Progesterone treatment partially reversed the estradiol effect. Although no modulation of Sox4 expression in the mammary glands was detected by Northern blot analysis, further evaluation of Sox4 protein expression at a cellular level is required. No modulation of Sox4 levels was observed in the thymus. The results presented here suggest that expression of the Sox4 gene is under ovarian hormone control in the uterus and implicate Sox4 in the complex effects controlled by ovarian hormones in the female reproductive system.  (+info)

Expression of insulin-like growth factor binding protein-1 (IGFBP-1) mRNA in the ovine uterus throughout the oestrous cycle and early pregnancy. (45/2639)

Insulin-like growth factors (IGFs) are thought to be important regulators of embryonic and fetal development. The half life, distribution and action of IGFs are modulated by a family of IGF-binding proteins (IGFBP). This study investigated the pattern of IGFBP-1 expression in the ovine uterus during the oestrous cycle and early pregnancy by in situ hybridisation. Uteri were collected from 46 non-pregnant ewes throughout the oestrous cycle and from 12 pregnant ewes between days (D)13 and 22 of gestation. Samples were also obtained on D16-17 from both horns of 5 ewes with unilateral pregnancies following uterine transection. IGFBP-1 expression was quantified as optical density (OD) units from autoradiographs using a Seescan image analysis system. IGFBP-1 mRNA was confined to the luminal epithelium, with a highly significant variation in concentration according to the stage of the cycle. In non-pregnant uteri, IGFBP-1 concentrations were high throughout the late luteal phase and oestrous period, peaking at an OD of 0.76+/-0.119, but concentrations fell below the detection limit (OD<0.01) by D5 before starting to increase again between D7 and 9. During early pregnancy there was no difference in expression between non-pregnant and pregnant ewes on D13 (OD 0.76+/-0.065, n=6 vs 0.71+/-0.070, n=3). As pregnancy progressed there was a significant steady decline in IGFBP-1 expression to 0.04+/-0.02 on D22. In the transected uteri on D16-17, IGFBP-1 mRNA expression was significantly higher in the pregnant than in the non-pregnant horn (0.44+/-0.04 vs 0.10+/-0.02, n=5, P<0.01). In conclusion, the location of the IGFBP-1 suggests that it may play a role in regulating the transfer of IGFs between the endometrium and the uterine lumen. The conceptus may enhance IGFBP-1 expression during early pregnancy. Oestrogen and progesterone may regulate IGFBP-1 expression during the cycle but this requires further investigation.  (+info)

Oestrogen and progesterone receptor immunoreactivity and c-fos expression in the ovine cervix. (46/2639)

Immunocytochemistry was used to detect the presence of oestrogen and progesterone receptors in the cervices of prepubertal lambs, seasonally anoestrous ewes, cyclic ewes, and pregnant ewes of known gestational stages, to define the roles of gonadal steroids in cervical function. The presence of the immediate early gene product, c-Fos, a marker for cellular activation, was also investigated using immunocytochemistry and in situ hybridization. Oestrogen receptor immunoreactivity was restricted to the endometrium on days 0-3 of the oestrous cycle (day 0 = oestrus). In immature animals, very few scattered nuclei in the endometrium were immunoreactive. Oestrogen receptor immunoreactivity was not apparent in the endometrium during the remainder of the oestrous cycle or in this region in anoestrous animals. In pregnant ewes, oestrogen receptor immunostaining appeared as relatively few isolated nuclei in the connective tissue stroma. Progesterone receptor immunoreactivity was found in the endometrium at days 0-3 of the oestrous cycle and also in the luminal epithelium, the myometrium and the blood vessels. Progesterone receptor immunoreactivity was also found in these regions, with the exception of the endometrium, at all other stages examined. Immunostaining for c-Fos was present in the endometrium at days 0-3 of the oestrous cycle, and some scattered immunopositive nuclei were present in prepubertal animals. c-Fos immunoreactivity was also found in the myometrium and in blood vessels at all other stages examined. Visualization of c-fos gene expression by in situ hybridization showed that it occurred in the luminal epithelium and blood vessels at oestrus, but was restricted to the blood vessels in all other samples examined.  (+info)

Expression of a cytosolic phospholipase A2 by ovine endometrium on days 11-14 of a simulated oestrous cycle. (47/2639)

Oxytocin stimulates the synthesis and secretion of PGF2 alpha from uterine tissues in vivo and in vitro late in the ovine oestrous cycle. The synthesis of eicosanoids is dependent upon the availability of free arachidonic acid which is released through the activity of arachidonate releasing phospholipases. In the present study, the following hypothesis was tested: the ovine endometrium expresses a cytosolic phospholipase A2 (cPLA2) and expression or activity of cPLA2 increases as uterine secretory responsiveness to oxytocin develops late in the oestrous cycle. Endometrial tissue was collected from cyclic ewes on day 15 of the oestrous cycle for the preparation of tissue homogenates and isolation of mRNA to determine whether ovine endometrium expressed a cPLA2. A 110 kDa band was detected by western blotting, indicating the presence of a putative ovine cPLA2. A 834 bp fragment of the ovine cPLA2 shared 87% homology with human and mouse cDNA, and northern blot hybridization analysis indicated a single 3.4 kb transcript. A total of 20 ewes were ovariectomized and treated with progesterone and oestrogen to simulate the oestrous cycle to determine whether the expression or activity of ovine cPLA2 changed during the onset of uterine secretory responsiveness to oxytocin in vivo. On days 11-14 (n = 5 per day) of a simulated oestrous cycle, caruncular endometrium was evaluated for expression of ovine cPLA2 mRNA and protein and the synthesis of PGF2 alpha in response to melittin (a potent stimulator of PLA2 activity). Immunoreactive cPLA2 and cPLA2 mRNA were observed on all days and did not increase during the development of uterine responsiveness to oxytocin in vivo. Similarly, melittin increased the synthesis of PGF2 alpha irrespective of day, indicating the presence of a functional cPLA2 on all days examined. These data indicate that the ovine endometrium expresses a functional cPLA2 and that ample concentrations of cPLA2 are present by day 11 of a simulated oestrous cycle.  (+info)

Follicular, hormonal, and pregnancy responses of early postpartum suckled beef cows to GnRH, norgestomet, and prostaglandin F2alpha. (48/2639)

Cycling (n = 16) and noncycling (n = 24), early postpartum, suckled beef cows of three breeds were assigned randomly to three treatments: 1) 100-microg injection of GnRH plus a 6-mg implant of norgestomet administered on d -7 before 25 mg of PGF2alpha and implant removal on d 0 (GnRH+NORG); 2) 100 microg of GnRH given on d -7 followed by 25 mg of PGF2alpha on d 0 (GnRH); or 3) 2 mL of saline plus a 6-mg implant of norgestomet administered on d -7 followed by 25 mg of PGF2, and implant removal on d 0 (NORG). All cows were given 100 microg of GnRH on d +2 (48 h after PGF2alpha). Blood sera collected daily from d -7 to d +4 were analyzed for progesterone and estradiol-17beta, and ovaries were monitored daily by transrectal ultrasonography to assess changes in ovarian structures. Luteal structures were induced in 75% of noncycling cows in both treatments after GnRH, resulting in elevated (P < .01) progesterone on d 0 for GnRH+NORG-treated cows. Concentrations of estradiol-17beta (P < .01) and LH (P < .05) were greater on d +2 after GnRH for cows previously receiving norgestomet implants. Pregnancy rates after one fixed-time AI at 16 h after GnRH (d +2) were greater (P < .05) in GnRH+NORG (71%) than in GnRH (31%) and NORG (15%) cows. Difference in pregnancy rate was due partly to normal luteal activity after AI in over 87% of GnRH+NORG cows and no incidence of short luteal phases. The GnRH+NORG treatment initially induced ovulation or turnover of the largest follicle, induction of a new follicular wave, followed later by increased concentrations of estradiol-17beta and progesterone. After PGF2alpha, greater GnRH-induced release of LH occurred in GnRH+NORG cows before ovulation, and pregnancy rates were greater after a fixed-time AI.  (+info)