Plasma concentration changes in LH and FSH following electrochemical stimulation of the medial preoptic are or dorsal anterior hypothalamic area of estrogen- or androgen-sterilized rats.(1/6438)


Possible suppression of host resistance by estrogen therapy for prostatic cancer.(2/6438)


The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. (3/6438)

We have established or characterized six lines of human breast cancer maintained in long-term tissue culture for at least 1 year and have examined these lines for estrogen responsiveness. One of these cell lines, MCF-7, shows marked stimulation of macromolecular synthesis and cell division with physiological concentrations of estradiol. Antiestrogens are strongly inhibitory, and at concentrations greater than 3 X 10(-7) M they kill cells. Antiestrogen effects are prevented by simultaneous treatment with estradiol or reversed by addition of estradiol to cells incubated in antiestrogen. Responsive cell lines contain high-affinity specific estradiol receptors. Antiestrogens compete with estradiol for these receptors but have a lower apparent affinity for the receptor than estrogens. Stimulation of cells by estrogens is biphasic, with inhibition and cell death at concentrations of 17beta-estradiol or diethylstilbestrol exceeding 10(-7) M. Killing by high concentrations of estrogen is probably a nonspecific effect in that we observe this response with 17alpha-estradiol at equivalent concentrations and in the otherwise unresponsive cells that contain no estrogen receptor sites.  (+info)

Marker molecules of human endometrial differentiation can be hormonally regulated under in-vitro conditions as in-vivo. (4/6438)

An established cell culture system of isolated human endometrial stromal and epithelial cells has been used to study the effects of oestrogen and progesterone, as well as their antagonists, upon endometrial cells. Normal hormonal regulation in vivo was investigated simultaneously in endometrial tissue samples taken at different phases of the menstrual cycle. Several marker molecules analysed by immunohistochemistry appeared to depend strongly on endocrine regulation and could be traced in culture. Immunohistochemically, basic parameters of cell biology were identified in vitro, e.g. cell proliferation (Ki-67), adhesion molecules (beta3 integrin) and paracrine factors (leukaemia inhibitory factor). The most reliable parameters to assess hormonal influences were oestrogen and progesterone receptor molecules. Immunohistochemical localization could be improved by molecular biological analysis using RT-PCR. In the presence of oestrogen, a significant expression of hormone receptors was also shown by RT-PCR, and withdrawal of oestrogens and addition of gestagen, i.e. medroxyprogesterone acetate, caused receptor downregulation. Addition of the anti-oestrogen ICI 182.780 to cell-culture medium significantly decreased the synthesis of progesterone receptors.  (+info)

Modulation of oestrogenic effects by progesterone antagonists in the rat uterus. (5/6438)

Antiprogestins can modulate oestrogenic effects in various oestrogen-dependent tissues, dependent on species, tissue, dose and duration of treatment. Enhanced oestrogenic responses to mifepristone and onapristone occur in vitro and in vivo. However, the antiprogestins mifepristone, onapristone, and ZK 137 316 can block the ability of oestradiol to increase endometrial growth in non-human primates. Our purposes were firstly, to decide whether mifepristone and onapristone had direct oestrogenic activity in vitro and in the uterus of spayed and immature rats, and secondly, to discover whether antiprogestins exhibit inhibitory effects on oestrogen action in the uterus in spayed, oestrogen-substituted rats. In transactivation assays, mifepristone induced oestrogenic response, whereas onapristone had only marginal effects on reporter gene transcription. In immature rats, onapristone and mifepristone markedly increased uterine weights, and onapristone, but not mifepristone significantly enhanced endometrial luminal epithelial height, a sensitive oestrogen parameter. Conversely, in spayed and adrenalectomized rats, neither onapristone nor mifepristone changed uterine weights or endometrial morphology, indicating that their effects in immature rats were indirect. In spayed, oestrogen-substituted rats, antiprogestins did not block oestradiol-stimulated endometrial growth and luminal and glandular epithelium were stimulated more after antiprogestin plus oestrogen, than after oestradiol alone. All compounds induced compaction of the uterine stroma. In spayed rats, onapristone and some other 13alpha-configured (type 1) antagonists (ZK 135 569, ZK 131 535) reduced oestradiol-stimulated myometrial proliferation and induced an overall uterine weight reduction in animals treated with oestrogen and antiprogestins, in comparison with oestradiol-treated controls. 13beta- configured (type II) antagonists, including mifepristone, lilopristone and ZK 112 993, were not effective. In the uteri of spayed rats, onapristone was also found to enhance the oestradiol-stimulatory effect on expression of the oestrogen-dependent proto-oncogene, c-fos. In conclusion, antiprogestins do not inhibit, but rather enhance, oestrogen-induced uterine glandular and luminal epithelium in spayed rats, contrary to their effects in primates. The rat model is unsuitable to study endometrial antiproliferative effects of antiprogestins in primate uteri.  (+info)

Endometriosis: a dysfunction and disease of the archimetra. (6/6438)

Endometriosis is considered primarily a disease of the endometrial-subendometrial unit or archimetra. The clinical picture of endometriosis characterises this disease as a hyperactivation of genuine archimetrial functions such as proliferation, inflammatory defence and peristalsis. While the aetiology of the disease remains to be elucidated, a key event appears to consist in the local production of extraovarian oestrogen by a pathological expression of the P450 aromatase. The starting event may consist in a hyperactivity of the endometrial inflammatory defence, a hyperactivity of the endometrial oxytocin/oxytocin receptor system or in the pathological expression of the P450 aromatase system itself. Regardless of which of these levels the starting event is localized in, they influence each other on both the level of the archimetra and the endometriotic lesions. Locally elevated oestrogen levels inevitably up-regulate the endometrial oxytocin mRNA and increased levels of oxytocin result in uterine hyperperistalsis, increased transtubal seeding of endometrial tissue fragments and finally subfertility and infertility by impairment of the uterine mechanism of rapid and sustained sperm transport. Locally increased levels of oestrogen lead, on both the level of the endometrial-subendometrial unit and the endometriotic lesion, to processes of hyperproliferation. These processes result, on the level of the uterus, in an infiltrative growth of elements of the archimetra into the neometra and, on the level of the endometriotic lesion, in infiltrative endometriosis. There is circumstantial evidence that trauma might be an important initial event that induces the specific biochemical and cellular responses of the archimetra. This model is able to explain both the pleiomorphic appearance of endometriosis and the, up until now, enigmatic infertility associated with mild and moderate endometriosis.  (+info)

Relationship between metabolism of androstenone and skatole in intact male pigs. (7/6438)

The relationship between the metabolism of androsterone and skatole, the major compounds responsible for boar taint, was investigated in F4 Swedish Yorkshire x European Wild Pig intact males. The metabolism of androstenone and skatole were studied in liver microsomes, and the testicular steroid production was measured in testes microsomes. Including androstenone in the assays of skatole metabolism reduced the formation of 6-hydroxyskatole (pro-MII), and three other skatole metabolites (P<.05). The formation of three additional metabolites was not affected. Liver microsomal incubations of androstenone produced two metabolites, I and II. The rate of the formation of metabolite I and the rate of androstenone metabolism were correlated with the rate of skatole metabolism. Liver metabolism of androstenone was not related to levels of androstenone in fat. Testicular synthesis of 16-androstene steroids was correlated with combined synthesis of estrogens and androgens, plasma levels of androstenone, levels of skatole in fat, and skatole metabolism in the liver (P<.05). Plasma levels of estrone sulfate were correlated with levels of skatole in fat and with androstenone levels in fat and plasma and were negatively correlated with synthesis of skatole metabolite F-1 and pro-MII sulfation. These results indicate that the liver metabolism of androstenone and skatole are related. However, it is likely that the relationship between levels of androstenone and skatole in fat is due more to a link between the testicular synthesis of androstenone rather than to the metabolism of androstenone and skatole in the liver. Sex steroids may affect this relationship because of their biosynthesis along with androstenone and possible inhibition of skatole metabolism in the liver.  (+info)

Estrogen induction of VLDLy assembly in egg-laying hens. (8/6438)

The yolk of a 60-g chicken egg contains 6 g of triacylglycerols transported to the oocyte from the liver of the laying hen in apolipoprotein (apo) B-containing particles. With the onset of egg production, estrogen shifts hepatocytic lipoprotein production from generic VLDL to VLDLy (yolk targeted). These VLDLy are triacylglycerol-rich particles; they are reduced in size by one half, are resistant to lipoprotein lipase and are taken up intact by oocyte receptors. The VLDLy pathway for apoB provides sufficient energy for the caloric requirements of chick development. VLDLy size reduction occurs in spite of surplus liver triacylglycerols and is necessary for VLDL particles to pass through the granulosa basal lamina and reach the receptors located on the oocyte surface. New ultrastructural data show that some proximal tubule cells of bird kidney secrete generic VLDL, perhaps providing energy and other VLDL-associated nutrients to tissues bypassed by VLDLy. Birds are an apoB100-only species, providing a natural in vivo model with which to investigate mechanisms of apoB100 VLDL assembly. Preliminary studies of liver lipoprotein assembly intermediates isolated from the biosynthetic membranes (endoplasmic reticulum) of the laying hen are consistent with the presence of both putative first- and second-step precursor particles of VLDLy. These findings suggest that the two-step mechanism of apoB core lipidation is an ancient development in apoB biology, handed down to mammals from oviparous ancestors.  (+info)