(1/13451) Changed levels of endogenous sex steroids in women on oral contraceptives.

Serum and urinary levels of unconjugated testosterone, dihydrotestosterone, and oestradiol were measured by specific radioimmunoassays in 10 healthy women in the early follicular phase of their menstrual cycle and in nine healthy women taking oral contraceptives. The contraceptive group had testosterone levels 1-3 times higher and dihydrotestosterone levels two times higher than those in the controls. Serum oestradiol levels in the contraceptive group were much lower than those in the controls and similar to levels in postmenopausal women. The contraceptive group had about twice the urinary excretion of unconjugated (free) testosterone and dihydrotestosterone of the controls, but their excretion of unconjugated oestradiol was 2-7 times lower. The great increase in serum and urinary androgen concentrations, as well as the suppression of oestradiol, may be related to the antiovulatory effect of oral contraceptives.  (+info)

(2/13451) The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture.

We have established or characterized six lines of human breast cancer maintained in long-term tissue culture for at least 1 year and have examined these lines for estrogen responsiveness. One of these cell lines, MCF-7, shows marked stimulation of macromolecular synthesis and cell division with physiological concentrations of estradiol. Antiestrogens are strongly inhibitory, and at concentrations greater than 3 X 10(-7) M they kill cells. Antiestrogen effects are prevented by simultaneous treatment with estradiol or reversed by addition of estradiol to cells incubated in antiestrogen. Responsive cell lines contain high-affinity specific estradiol receptors. Antiestrogens compete with estradiol for these receptors but have a lower apparent affinity for the receptor than estrogens. Stimulation of cells by estrogens is biphasic, with inhibition and cell death at concentrations of 17beta-estradiol or diethylstilbestrol exceeding 10(-7) M. Killing by high concentrations of estrogen is probably a nonspecific effect in that we observe this response with 17alpha-estradiol at equivalent concentrations and in the otherwise unresponsive cells that contain no estrogen receptor sites.  (+info)

(3/13451) The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture.

We have examined five human breast cancer cell lines in continuous tissue culture for androgen responsiveness. One of these cell lines shows a 2- to 4-fold stimulation of thymidine incorporation into DNA, apparent as early as 10 hr following androgen addition to cells incubated in serum-free medium. This stimulation is accompanied by an acceleration in cell replication. Antiandrogens [cyproterone acetate (6-chloro-17alpha-acetate-1,2alpha-methylene-4,6-pregnadiene-3,20-dione) and R2956 (17beta-hydroxy-2,2,17alpha-trimethoxyestra-4,9,11-triene-1-one)] inhibit both protein and DNA synthesis below control levels and block androgen-mediated stimulation. Prolonged incubation (greater than 72 hr) in antiandrogen is lethal. The MCF- cell line contains high-affinity receptors for androgenic steroids demonstrable by sucrose density gradients and competitive protein binding analysis. By cross-competition studies, androgen receptors are distinguishable from estrogen receptors also found in this cell line. Concentrations of steroid that saturate androgen receptor sites in vitro are about 1000 times lower than concentrations that maximally stimulate the cells. Changes in quantity and affinity of androgen binding to intact cells at 37 degrees as compared with usual binding techniques using cytosol preparation at 0 degrees do not explain this difference between dissociation of binding and effect. However, this difference can be explained by conversion of [3H]-5alpha-dihydrotestosterone to 5alpha-androstanediol and more polar metabolites at 37 degrees. An examination of incubation media, cytoplasmic extracts and crude nuclear pellets reveals probable conversion of [3H]testosterone to [3H]-5alpha-dihydrotestosterone. Our data provide compelling evidence that some human breast cancer, at least in vitro, may be androgen dependent.  (+info)

(4/13451) Progesterone inhibits estrogen-induced cyclin D1 and cdk4 nuclear translocation, cyclin E- and cyclin A-cdk2 kinase activation, and cell proliferation in uterine epithelial cells in mice.

The response of the uterine epithelium to female sex steroid hormones provides an excellent model to study cell proliferation in vivo since both stimulation and inhibition of cell proliferation can be studied. Thus, when administered to ovariectomized adult mice 17beta-estradiol (E2) stimulates a synchronized wave of DNA synthesis and cell division in the epithelial cells, while pretreatment with progesterone (P4) completely inhibits this E2-induced cell proliferation. Using a simple method to isolate the uterine epithelium with high purity, we have shown that E2 treatment induces a relocalization of cyclin D1 and, to a lesser extent, cdk4 from the cytoplasm into the nucleus and results in the orderly activation of cyclin E- and cyclin A-cdk2 kinases and hyperphosphorylation of pRb and p107. P4 pretreatment did not alter overall levels of cyclin D1, cdk4, or cdk6 nor their associated kinase activities but instead inhibited the E2-induced nuclear localization of cyclin D1 to below the control level and, to a lesser extent, nuclear cdk4 levels, with a consequent inhibition of pRb and p107 phosphorylation. In addition, it abrogated E2-induced cyclin E-cdk2 activation by dephosphorylation of cdk2, followed by inhibition of cyclin A expression and consequently of cyclin A-cdk2 kinase activity and further inhibition of phosphorylation of pRb and p107. P4 is used therapeutically to oppose the effect of E2 during hormone replacement therapy and in the treatment of uterine adenocarcinoma. This study showing a novel mechanism of cell cycle inhibition by P4 may provide the basis for the development of new antiestrogens.  (+info)

(5/13451) Estrogen-dependent and independent activation of the P1 promoter of the p53 gene in transiently transfected breast cancer cells.

Loss of p53 function by mutational inactivation is the most common marker of the cancerous phenotype. Previous studies from our laboratory have demonstrated 17 beta estradiol (E2) induction of p53 protein expression in breast cancer cells. Although direct effects of E2 on the expression of p53 gene are not known, the steroid is a potent regulator of c-Myc transcription. In the present studies, we have examined the ability of E2 and antiestrogens to regulate the P1 promoter of the p53 gene which contains a c-Myc responsive element. Estrogen receptor (ER)-positive T47D and MCF-7 cells were transiently transfected with the P1CAT reporter plasmid and levels of CAT activity in response to serum, E2 and antiestrogens were monitored. Factors in serum were noted to be the dominant inducers of chloramphenicol acetyltransferase (CAT) expression in MCF-7 cells. The levels of CAT were drastically reduced when cells were maintained in serum free medium (SFM). However, a subtle ER-mediated induction of CAT expression was detectable when MCF-7 cells, cultured in SFM, were treated with E2. In serum-stimulated T47D cells, the CAT expression was minimal. The full ER antagonist, ICI 182 780 (ICI) had no effect. Treatment with E2 or 4-hydroxy tamoxifen (OHT) resulted in P1CAT induction; OHT was more effective than E2. Consistent with c-Myc regulation of the P1 promoter, E2 stimulated endogenous c-Myc in both cell lines. Two forms of c-Myc were expressed independent of E2 stimuli. The expression of a third more rapidly migrating form was E2-dependent and ER-mediated since it was blocked by the full ER antagonist, ICI, but not by the ER agonist/antagonist OHT. These data demonstrate both ER-mediated and ER-independent regulation of c-Myc and the P1 promoter of the p53 gene, and show differential effects of the two classes of antiestrogens in their ability to induce the P1 promoter of the p53 gene in breast cancer cells.  (+info)

(6/13451) Estrogen enhancement of anti-double-stranded DNA antibody and immunoglobulin G production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus.

OBJECTIVE: To study the in vitro effect of estrogen on IgG anti-double-stranded DNA (anti-dsDNA) antibody and total IgG production in peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE), in order to elucidate its regulatory role in SLE. METHODS: PBMC from SLE patients and normal donors were cultured with 17beta-estradiol (E2). IgG anti-dsDNA antibodies, total IgG, and cytokine activity in the culture supernatants were measured by enzyme-linked immunosorbent assay. RESULTS: E2 enhanced production of IgG anti-dsDNA antibodies as well as total IgG in PBMC from SLE patients. Anti-dsDNA production in patients with inactive disease was less responsive to E2 than that in patients with active disease. E2 also enhanced total IgG, but not anti-dsDNA, production in the PBMC of normal donors. Antibody production was increased by E2 to a lesser extent in patients' B cells than in their PBMC. Anti-interleukin-10 (anti-IL-10) antibodies partially blocked the E2-induced increase in antibody production in patients' PBMC, but anti-IL-10 had no effect on B cells. E2 increased IL-10 production by patients' monocytes. Exogenous IL-10 acted additively with E2 in increasing antibody production in patients' B cells. CONCLUSION: These results suggest that E2 may polyclonally increase the production of IgG, including IgG anti-dsDNA, in SLE patients' PBMC by enhancing B cell activity and by promoting IL-10 production in monocytes. These findings support the involvement of E2 in the pathogenesis of SLE.  (+info)

(7/13451) In vitro development of sheep preantral follicles.

Preantral ovarian follicles isolated from prepubertal sheep ovaries were individually cultured for 6 days in the presence of increasing doses of FSH (ranging from 0.01 to 1 microg/ml) and under two different oxygen concentrations, 20% and 5% O2. Follicle development was evaluated on the basis of antral cavity formation as well as the presence of healthy cumulus oocyte complexes. Follicle growth was enhanced by FSH addition to culture medium, while the use of a low oxygen concentration slightly stimulated this process. However, when follicles were cultured in the presence of high doses of FSH (1 microgram/ml) and under low oxygen concentration, a high proportion of them showed the presence of an antral cavity and of a healthy cumulus-oocyte complex. In addition, under this specific culture condition sheep preantral follicles released higher levels of estradiol as compared to those secreted at lower FSH concentrations or under 20% O2. When the meiotic competence of oocytes derived from follicles cultured at 1 microgram/ml FSH was assessed, no significant difference was recorded between the two oxygen groups. These results show that the culture conditions here identified are beneficial to in vitro growth and differentiation of sheep preantral follicles.  (+info)

(8/13451) Delay of preterm delivery in sheep by omega-3 long-chain polyunsaturates.

A positive correlation has been shown between dietary intake of long-chain omega-3 fatty acids in late pregnancy and gestation length in pregnant women and experimental animals. To determine whether omega-3 fatty acids have an effect on preterm labor in sheep, a fish oil concentrate emulsion was continuously infused to six pregnant ewes from 124 days gestational age. At 125 days, betamethasone was administered to the fetus to produce preterm labor. Both the onset of labor and the time of delivery were delayed by the fish oil emulsion. Two of the omega-3-infused ewes reverted from contractions to nonlabor, an effect never previously observed for experimental glucocorticoid-induced preterm labor in sheep. Maternal plasma estradiol and maternal and fetal prostaglandin E2 rose in control ewes but not in those infused with omega-3 fatty acid. The ability of omega-3 fatty acids to delay premature delivery in sheep indicates their possible use as tocolytics in humans. Premature labor is the major cause of neonatal death and long-term disability, and these studies present information that may lead to a novel therapeutic regimen for the prevention of preterm delivery in human pregnancy.  (+info)