Different foci for the regulation of the activity of the KefB and KefC glutathione-gated K+ efflux systems. (65/18963)

KefB and KefC are glutathione-gated K+ efflux systems in Escherichia coli, and the proteins exhibit strong similarity at the level of both primary sequence and domain organization. The proteins are maintained closed by glutathione and are activated by binding of adducts formed between glutathione and electrophiles. By construction of equivalent mutations in each protein, this study has analyzed the control over inactive state of the proteins. A UV-induced mutation in KefB, L75S, causes rapid spontaneous K+ efflux but has only a minor effect on K+ efflux via KefC. Similarly amino acid substitutions that cause increased spontaneous activity in KefC have only small effects in KefB. Exchange of an eight amino acid region from KefC (HALESDIE) with the equivalent sequence from KefB (HELETAID) has identified a role for a group of acidic residues in controlling KefC activity. The mutations HELETAID and L74S in KefC act synergistically, and the activity of the resultant protein resembles that of KefB. We conclude that, despite the high degree of sequence similarity, KefB and KefC exhibit different sensitivities to the same site-specific mutations.  (+info)

Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction At 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. (66/18963)

Palmitoleate is not present in lipid A isolated from Escherichia coli grown at 30 degrees C or higher, but it comprises approximately 11% of the fatty acyl chains of lipid A in cells grown at 12 degrees C. The appearance of palmitoleate at 12 degrees C is accompanied by a decline in laurate from approximately 18% to approximately 5.5%. We now report that wild-type E. coli shifted from 30 degrees C to 12 degrees C acquire a novel palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase that acts on the key lipid A precursor Kdo2-lipid IVA. The palmitoleoyl transferase is induced more than 30-fold upon cold shock, as judged by assaying extracts of cells shifted to 12 degrees C. The induced activity is maximal after 2 h of cold shock, and then gradually declines but does not disappear. Strains harboring an insertion mutation in the lpxL(htrB) gene, which encodes the enzyme that normally transfers laurate from lauroyl-ACP to Kdo2-lipid IVA (Clementz, T., Bednarski, J. J., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 12095-12102) are not defective in the cold-induced palmitoleoyl transferase. Recently, a gene displaying 54% identity and 73% similarity at the protein level to lpxL was found in the genome of E. coli. This lpxL homologue, designated lpxP, encodes the cold shock-induced palmitoleoyl transferase. Extracts of cells containing lpxP on the multicopy plasmid pSK57 exhibit a 10-fold increase in the specific activity of the cold-induced palmitoleoyl transferase compared with cells lacking the plasmid. The elevated specific activity of the palmitoleoyl transferase under conditions of cold shock is attributed to greatly increased levels of lpxP mRNA. The replacement of laurate with palmitoleate in lipid A may reflect the desirability of maintaining the optimal outer membrane fluidity at 12 degrees C.  (+info)

Anoxic function for the Escherichia coli flavohaemoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide. (67/18963)

The flavohaemoglobin Hmp of Escherichia coli is inducible by nitric oxide (NO) and provides protection both aerobically and anaerobically from inhibition of growth by NO and agents that cause nitrosative stress. Here we report rapid kinetic studies of NO binding to Fe(III) Hmp with a second order rate constant of 7.5 x 10(5) M(-1) s(-1) to generate a nitrosyl adduct that was stable anoxically but decayed in the presence of air to reform the Fe(III) protein. NO displaced CO bound to dithionite-reduced Hmp but, remarkably, CO recombined after only 2 s at room temperature indicative of NO reduction and dissociation from the haem. Addition of NO to anoxic NADH-reduced Hmp also generated a nitrosyl species which persisted while NADH was oxidised. These results are consistent with direct demonstration by membrane-inlet mass spectrometry of NO consumption and nitrous oxide production during anoxic incubation of NADH-reduced Hmp. The results demonstrate a new mechanism by which Hmp may eliminate NO under anoxic growth conditions.  (+info)

Purification, characterization and crystallization of ERA, an essential GTPase from Escherichia coli. (68/18963)

ERA is an essential GTPase widely conserved in bacteria. Homologues of ERA are also present in higher eukaryotic cells. ERA is involved in bacterial cell cycle control at a point preceding cell division. In order to aid the functional investigation of ERA and to facilitate structure-function studies, we have undertaken the X-ray crystallographic analysis of this protein. Here, we report the purification and crystallization procedures and results. The purified ERA exhibits nucleotide-binding activity and GTP-hydrolytic activity. ERA is one of the very few multi-domain GTPases crystallized to date.  (+info)

Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. (69/18963)

In the genome of the gram-positive bacterium Lactococcus lactis MG1363, we have identified three genes (clpC, clpE, and clpB) which encode Clp proteins containing two conserved ATP binding domains. The proteins encoded by two of the genes belong to the previously described ClpB and ClpC families. The clpE gene, however, encodes a member of a new Clp protein family that is characterized by a short N-terminal domain including a putative zinc binding domain (-CX2CX22CX2C-). Expression of the 83-kDa ClpE protein as well as of the two proteins encoded by clpB was strongly induced by heat shock and, while clpC mRNA synthesis was moderately induced by heat, we were unable to identify the ClpC protein. When we analyzed mutants with disruptions in clpB, clpC, or clpE, we found that although the genes are part of the L. lactis heat shock stimulon, the mutants responded like wild-type cells to heat and salt treatments. However, when exposed to puromycin, a tRNA analogue that results in the synthesis of truncated, randomly folded proteins, clpE mutant cells formed smaller colonies than wild-type cells and clpB and clpC mutant cells. Thus, our data suggest that ClpE, along with ClpP, which recently was shown to participate in the degradation of randomly folded proteins in L. lactis, could be necessary for degrading proteins generated by certain types of stress.  (+info)

The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. (70/18963)

Escherichia coli responds to external acidification (pH 4.0 to 5.0) by synthesizing a newly identified, approximately 450-nucleotide RNA component. At maximal levels of induction it is one of the most abundant small RNAs in the cell and is relatively stable bacterial RNA. The acid-inducible RNA was purified, and the gene encoding it, designated asr (for acid shock RNA), mapped at 35.98 min on the E. coli chromosome. Analysis of the asr DNA sequence revealed an open reading frame coding for a 111-amino-acid polypeptide with a deduced molecular mass of approximately 11.6 kDa. According to computer-assisted analysis, the predicted polypeptide contains a typical signal sequence of 30 amino acids and might represent either a periplasmic or an outer membrane protein. The asr gene cloned downstream from a T7 promoter was translated in vivo after transcription using a T7 RNA polymerase transcription system. Expression of a plasmid-encoded asr::lacZ fusion under a native asr promoter was reduced approximately 15-fold in a complex medium, such as Luria-Bertani medium, versus the minimal medium. Transcription of the chromosomal asr was abolished in the presence of a phoB-phoR (a two-component regulatory system, controlling the pho regulon inducible by phosphate starvation) deletion mutant. Acid-mediated induction of the asr gene in the Delta(phoB-phoR) mutant strain was restored by introduction of the plasmid with cloned phoB-phoR genes. Primer extension analysis of the asr transcript revealed a region similar to the Pho box (the consensus sequence found in promoters transcriptionally activated by the PhoB protein) upstream from the determined transcription start. The asr promoter DNA region was demonstrated to bind PhoB protein in vitro. We discuss our results in terms of how bacteria might employ the phoB-phoR regulatory system to sense an external acidity and regulate transcription of the asr gene.  (+info)

BadR, a new MarR family member, regulates anaerobic benzoate degradation by Rhodopseudomonas palustris in concert with AadR, an Fnr family member. (71/18963)

A cluster of genes for the anaerobic degradation of benzoate has been described for the phototrophic bacterium Rhodopseudomonas palustris. Here we provide an initial analysis of the regulation of anaerobic benzoate degradation by examining the contributions of two regulators: a new regulator, BadR, encoded by the benzoate degradation gene cluster, and a previously described regulator, AadR, whose gene lies outside the cluster. Strains with single mutations in either badR or aadR grew slowly on benzoate but were relatively unimpaired in growth on succinate and several intermediates of benzoate degradation. A badR aadR double mutant was completely defective in anaerobic growth on benzoate. Effects of the regulators on transcriptional activation were monitored with an R. palustris strain carrying a chromosomal fusion of 'lacZ to the badE gene of the badDEFG operon. This operon encodes benzoyl-coenzyme A (benzoyl-CoA) reductase, an unusual oxygen-sensitive enzyme that catalyzes the benzene ring reduction reaction that is the rate-limiting step in anaerobic benzoate degradation. Expression of badE::'lacZ was induced 100-fold when cells grown aerobically on succinate were shifted to anaerobic growth on succinate plus benzoate. The aadR gene was required for a 20-fold increase in expression that occurred in response to anaerobiosis, and badR was responsible for a further 5-fold increase in expression that occurred in response to benzoate. Further studies with the badE::'lacZ fusion strain grown with various kinds of aromatic acids indicated that BadR probably responds to benzoyl-CoA acting as an effector molecule. Sequence information indicates that BadR is a member of the MarR family of transcriptional regulators. These studies expand the range of functions regulated by MarR family members to include anaerobic aromatic acid degradation and provide an example of a MarR-type protein that acts as a positive regulator rather than as a negative regulator, as do most MarR family members. AadR resembles the Escherichia coli Fnr regulator in sequence and contains cysteine residues that are spaced appropriately to serve in the capacity of a redox-sensing protein.  (+info)

Binding site recognition by Rns, a virulence regulator in the AraC family. (72/18963)

The expression of CS1 pili by enterotoxigenic strains of Escherichia coli is regulated at the transcriptional level and requires the virulence regulator Rns, a member of the AraC family of regulatory proteins. Rns binds at two separate sites upstream of Pcoo (the promoter of CS1 pilin genes), which were identified in vitro with an MBP::Rns fusion protein in gel mobility and DNase I footprinting assays. At each site, Rns recognizes asymmetric nucleotide sequences in two regions of the major groove and binds along one face of the DNA helix. Both binding sites are required for activation of Pcoo in vivo, because mutagenesis of either site significantly reduced the level of expression from this promoter. Thus, Rns regulates the expression of CS1 pilin genes directly, not via a regulatory cascade. Analysis of Rns-nucleotide interactions at each site suggests that binding sites for Rns and related virulence regulators are not easily identified because they do not bind palindromic or repeated sequences. A strategy to identify asymmetric binding sites is presented and applied to locate potential binding sites upstream of other genes that Rns can activate, including those encoding the CS2 and CFA/I pili of enterotoxigenic E. coli and the global regulator virB of Shigella flexneri.  (+info)