Mechanism of exercise-induced ocular hypotension. (1/141)

PURPOSE: Although acute dynamic exercise reduces intraocular pressure (IOP), the factors that provoke this response remain ill-defined. To determine whether changes in colloid osmotic pressure (COP) cause the IOP changes during exercise, standardized exercise was performed after dehydration and hydration with isosmotic fluid. METHODS: Progressive cycle ergometer exercise to volitional exhaustion was performed after 4 hours' dehydration, and after hydration with 946 ml isosmotic liquid (345 mOsM). In each experiment, venous blood taken before and immediately after exercise was analyzed for hematocrit, plasma protein concentration, total plasma osmolality, and plasma COP. RESULTS: Exercise in both experiments significantly reduced IOP and elevated COP (each P < 0.01). Dehydration, compared with hydration, also significantly reduced IOP and elevated COP, when measured before and after exercise (P < 0.05). The correlation of mean IOP with mean COP, over the entire range created by varying exercise and hydration statuses, was statistically significant (r = -0.99; P < 0.001). In contrast, other indexes of hydration status, including hematocrit, total plasma osmolality, and plasma protein concentration, failed to change as IOP changed and failed to correlate with IOP, on either a group or individual basis, in conditions of varying levels of exercise and hydration. CONCLUSIONS: Acute dynamic exercise and isosmotic fluid ingestion each seem to change IOP through changes in COP.  (+info)

Development of ergometer attachment for power and maximum anaerobic power measurement in swimming. (2/141)

The ergometer can be a versatile means of measurement if attachments are developed for special purposes or if attachment is developed for multi-uses. In this study, an ergometer attachment for the measurement of power was designed and the measurement of power and the maximum anaerobic power in swimming was tested. A rotation drum was attached to one pedal of an ergometer. The rotation of this drum was synchronized with the rotation of the pedal. One end of a wire for a traction by a swimmer was connected to the drum. The other end of the wire was attached to a belt around the waist of a swimmer. The swimmer swam at full strength, thus causing the drum to rotate. The rotational velocity of the drum was detected as voltage by a magnetic permanent motor and transformed to wire tractional velocity; this velocity was equal to swimming velocity. The wire tension (= load) was controlled by a load adjusting lever of the ergometer. This wire tension was equal to the load which was added to the swimmer. The power calculation was based on a curved regression equation approximated from the load and the velocity. This equation was shown as follows; (P + a) (v + b) = (P0 + a)b or its development (P + a)v = b(P0 - P) and provided that P: force or load, v: swimming velocity, P0: maximum tractional force, a and b: constants. This ergometer attachment made it possible to measure and evaluate the power and the maximum anaerobic power in swimming with ease and at low cost. Measurement and evaluation are easily performed using the system, which is just one example of the possible applications of the ergometer.  (+info)

Effects of velocity on upper to lower extremity muscular work and power output ratios of intercollegiate athletes. (3/141)

OBJECTIVES: Peak torque expresses a point output which may, but does not always, correlate well with full range output measures such as work or power, particularly in a rehabilitating muscle. This study evaluates isokinetic performance variables, particularly (a) flexor to extensor work and power output ratios of upper and lower extremities and (b) overall upper to lower extremity work and power ratios, in intercollegiate athletes. The purpose was to ascertain how speeds of 30 and 180 degrees/s influence agonist to antagonist ratios for torque, work, and power and to determine the effects of these speeds on upper to lower limb flexor (F), extensor (E), and combined (F + E) ratios, as a guide to rehabilitation protocols and outcomes after injury. METHODS: Twenty seven athletic men without upper or lower extremity clinical histories were tested isokinetically at slow and moderately fast speeds likely to be encountered in early stages of rehabilitation after injury. Seated knee extensor and flexor outputs, particularly work and power, were investigated, as were full range elbow extensor and flexor outputs. The subjects were morphologically similar in linearity and muscularity (coefficient of variation 4.17%) so that standardisation of isokinetic outputs to body mass effectively normalised for strength differences due to body size. Peak torque (N.m/kg), total work (J/kg), and average power (W/kg) for elbow and knee flexions and extensions were measured on a Cybex 6000 isokinetic dynamometer. With respect to the raw data, the four test conditions (F at 30 degrees/s; E at 30 degrees/s; F at 180 degrees/s; E at 180 degrees/s) were analysed by one way analysis of variance. Reciprocal (agonist to antagonist) F to E ratios of the upper and lower extremities were calculated, as were upper to lower extremity flexor, extensor, and combined (F + E) ratios. Speed related differences between the derived ratios were analysed by Student's t tests (related samples). RESULTS: At the speeds tested all torque responses exhibited velocity related decrements at rates that kept flexor to extensor ratios and upper to lower extremity ratios constant (p > 0.05) for work and power. All upper extremity relative torque, work, and power flexion responses were equal to extension responses (p > 0.05) regardless of speed. Conversely, all lower extremity relative measures of torque, work, and power of flexors were significantly lower than extensor responses. In the case of both upper and lower extremities, work and power F to E ratios were unaffected by speed. Moreover, increasing speed from 30 to 180 degrees/s had no effect on upper to lower extremity work and power ratios, whether for flexion, extension, or flexion and extension combined. CONCLUSIONS: Peak torque responses may not adequately reflect tension development through an extensive range of motion. Total work produced and mean power generated, on the other hand, are highly relevant measures of performance, and these, expressed as F to E ratios, are unaffected by speeds of 30 and 180 degrees/s, whether for upper or lower extremities or for upper to lower extremities. In this sample, regardless of speed, the upper extremity produced 55% of the work and 39% of the power of the lower extremity, when flexor and extensor outputs were combined. Injured athletes are, in the early stages of function restoration, often not able to exert tension at fast speeds. An understanding of upper to lower extremity muscular work and power ratios has important implications for muscle strengthening after injury. Knowledge of normal upper to lower extremity work and power output ratios at slow to moderately fast isokinetic speeds is particularly useful in cases of bilateral upper (or lower) extremity rehabilitation, when the performance of a contralateral limb cannot be used as a yardstick.  (+info)

Breathing during exercise in subjects with mild-to-moderate airflow obstruction: effects of physical training. (4/141)

In this study we explored the effects of physical training on the response of the respiratory system to exercise. Eight subjects with irreversible mild-to-moderate airflow obstruction [forced expiratory volume in 1 s of 85 +/- 14 (SD) % of predicted and ratio of forced expiratory volume in 1 s to forced vital capacity of 68 +/- 5%] and six normal subjects with similar anthropometric characteristics underwent a 2-mo physical training period on a cycle ergometer three times a week for 31 min at an intensity of approximately 80% of maximum heart rate. At this work intensity, tidal expiratory flow exceeded maximal flow at control functional residual capacity [FRC; expiratory flow limitation (EFL)] in the obstructed but not in the normal subjects. An incremental maximum exercise test was performed on a cycle ergometer before and after training. Training improved exercise capacity in all subjects, as documented by a significant increase in maximum work rate in both groups (P < 0.001). In the obstructed subjects at the same level of ventilation at high workloads, FRC was greater after than before training, and this was associated with an increase in breathing frequency and a tendency to decrease tidal volume. In contrast, in the normal subjects at the same level of ventilation at high workloads, FRC was lower after than before training, so that tidal volume increased and breathing frequency decreased. These findings suggest that adaptation to breathing under EFL conditions does not occur during exercise in humans, in that obstructed subjects tend to increase FRC during exercise after experiencing EFL during a 2-mo strenuous physical training period.  (+info)

Skeletal muscle metabolism during high-intensity sprint exercise is unaffected by dichloroacetate or acetate infusion. (5/141)

This study investigated whether increased provision of oxidative substrate would reduce the reliance on nonoxidative ATP production and/or increase power output during maximal sprint exercise. The provision of oxidative substrate was increased at the onset of exercise by the infusion of acetate (AC; increased resting acetylcarnitine) or dichloroacetate [DCA; increased acetylcarnitine and greater activation of pyruvate dehydrogeanse (PDH-a)]. Subjects performed 10 s of maximal cycling on an isokinetic ergometer on three occasions after either DCA, AC, or saline (Con) infusion. Resting PDH-a with DCA was increased significantly over AC and Con trials (3.58 +/- 0.4 vs. 0.52 +/- 0.1 and 0.74 +/- 0.1 mmol. kg wet muscle(-1). min(-1)). DCA and AC significantly increased resting acetyl-CoA (35.2 +/- 4.4 and 22.7 +/- 2.9 vs. 10.2 +/- 1.3 micromol/kg dry muscle) and acetylcarnitine (12.9 +/- 1.4 and 11.0 +/- 1.0 vs. 3.3 +/- 0.6 mmol/kg dry muscle) over Con. Resting contents of phosphocreatine, lactate, ATP, and glycolytic intermediates were not different among trials. Average power output and total work done were not different among the three 10-s sprint trials. Postexercise, PDH-a in AC and Con trials had increased significantly but was still significantly lower than in DCA trial. Acetyl-CoA did not increase in any trial, whereas acetylcarnitine increased significantly only in DCA. Exercise caused identical decreases in ATP and phosphocreatine and identical increases in lactate, pyruvate, and glycolytic intermediates in all trials. These data suggest that there is an inability to utilize extra oxidative substrate (from either stored acetylcarnitine or increased PDH-a) during exercise at this intensity, possibly because of O(2) and/or metabolic limitations.  (+info)

Prediction of metabolic and cardiopulmonary responses to maximum cycle ergometry: a randomised study. (6/141)

All of the most widely-cited studies for the prediction of maximum exercise responses have utilized either volunteers or referred subjects. Therefore, selection bias, with overestimation of the reference values, is a likely consequence. In order to establish a set of predictive equations for the gas exchange, ventilatory and cardiovascular responses to maximum ramp-incremental cycle ergometry, this study prospectively evaluated 120 sedentary individuals (60 males, 60 females, aged 20-80), randomly-selected from >8,000 subjects. Regular physical activity pattern by questionnaire, body composition by anthropometry and dual energy X-ray absorptiometry (n = 75) and knee strength by isokinetic dynamometry were also assessed. Previously reported equations typically overestimated the subjects' peak oxygen uptake (p<0.05). Prediction linear equations for the main variables of clinical interest were established by backward stepwise regression analysis including: sex, age, knee extensor peak torque, bone-free lean leg mass, total and lean body mass, height, and physical activity scores. Reference intervals (95% confidence limits) were calculated: some of these values differed markedly from those formerly recommended. The results therefore might provide a more appropriate frame of reference for interpretation of the responses to symptom-limited ramp incremental cycle ergometry in sedentary subjects; i.e. those usually referred for clinical cardiopulmonary exercise tests.  (+info)

Influence of upper- and lower-limb exercise training on cardiovascular function and walking distances in patients with intermittent claudication. (7/141)

PURPOSE: The effects of upper-limb (arm cranking) and lower-limb (leg cranking) exercise training on walking distances in patients with intermittent claudication was assessed. METHODS: Sixty-seven patients (33 to 82 years old) with moderate to severe intermittent claudication were recruited, and the maximum power generated during incremental upper- and lower-limb ergometry tests was determined, as were pain-free and maximum walking distances (by using a shuttle walk test). Patients were randomly assigned to an upper-limb training group (n = 26) or a lower-limb training group (n = 26). An additional untrained group (n = 15) was recruited on an ad hoc basis in parallel with the main trial by using identical inclusion criteria. This group was subsequently shown to possess a similar demographic distribution to the two exercise groups. Supervised training sessions were held twice weekly for 6 weeks. RESULTS: Both training programs significantly improved the maximum power generated during the incremental upper- and lower-limb ergometry tests (P <. 001), which may reflect an increase in central cardiovascular function that was independent of the training mode. More importantly, pain-free and maximum walking distances also improved in both training groups (P <.001). The improvements in the training groups were similar; there were no changes in the untrained control group. These findings suggest that the symptomatic improvement after upper-limb exercise training may result, in part, from systemic cardiovascular effects rather than localized metabolic or hemodynamic changes. CONCLUSION: Carefully prescribed upper-limb exercise training can evoke a rapid symptomatic improvement in patients with claudication, while avoiding the physical discomfort experienced when performing lower-limb weight-bearing exercise.  (+info)

Exercise and heart failure. Relation of the severity of the disease to the anaerobic threshold and the respiratory compensation point. (8/141)

OBJECTIVE - To identify, the anaerobic threshold and respiratory compensation point in patients with heart failure. METHODS - The study comprised 42 Men,divided according to the functional class (FC) as follows: group I (GI) - 15 patients in FC I; group II (GII) - 15 patients in FC II; and group III (GIII) - 12 patients in FC III. Patients underwent a treadmill cardiopulmonary exercise test, where the expired gases were analyzed. RESULTS - The values for the heart rate (in bpm) at the anaerobic threshold were the following: GI, 122+/-27; GII, 117+/-17; GIII, 114+/-22. At the respiratory compensation point, the heart rates (in bpm) were as follows: GI, 145+/-33; GII, 133+/-14; GIII 123+/-22. The values for the heart rates at the respiratory compensation point in GI and GIII showed statistical difference. The values of oxygen consumption (VO2) at the anaerobic threshold were the following (in ml/kg/min): GI, 13. 6+/-3.25; GII, 10.77+/-1.89; GIII, 8.7+/-1.44 and, at the respiratory compensation point, they were as follows: GI, 19.1+/-2. 2; GII, 14.22+/-2.63; GIII, 10.27+/-1.85. CONCLUSION - Patients with stable functional class I, II, and III heart failure reached the anaerobic threshold and the respiratory compensation point at different levels of oxygen consumption and heart rate. The role played by these thresholds in physical activity for this group of patients needs to be better clarified.  (+info)