Temporal changes in the expression of platelet-derived growth factor and fibronectin in the uterine epithelium during early pregnancy. (73/13068)

In rat uterine epithelium, platelet-derived growth factor (PDGF) and fibronectin (FN) display changes in temporal expression during implantation. PDGF was expressed in the apical epithelium on Day 3, apically, laterally and basally at the time of implantation on Day 6 but was not expressed on Day 7. FN expression was not seen until Day 6, when it was expressed only in the basement membrane. However, this label was markedly increased in the basement membrane on Day 7. We suggest that fibronectin may be upregulated by PDGF in preparation for invasion of the basement membrane by stromal decidual cells and the subsequent attachment of the trophoblast to the maternal extracellular matrix.  (+info)

Pulmonary ischemia/reperfusion injury: a quantitative study of structure and function in isolated heart-lungs of the rat. (74/13068)

Early graft dysfunction after lung transplantation is a significant and unpredictable problem. Our study aimed at a detailed investigation of structure-function correlations in a rat isolated heart-lung model ofischemia/ reperfusion injury. Variable degrees of injury were induced by preservation with potassium-modified Euro-Collins solutions, 2 hr of cold ischemia, and 40 min of reperfusion. Pulmonary artery pressure (Ppa), pulmonary vascular resistance (PVR), peak inspiratory pressure (PIP), and perfusate gases (deltaPO2, deltaPCO2) were recorded during reperfusion. Right lungs were used to calculate W/D-weight ratios. Nineteen experimental and six control left lungs were fixed for light and electron microscopy by vascular perfusion. Systematic random samples were analyzed by stereology to determine absolute and relative volumes of lung structures, the amount of interstitial and intraalveolar edema, and the extent of epithelial injury. Lectin- and immunohistochemistry using established epithelial cell markers were performed in three animals per group to reveal sites of severe focal damage. Experimental lungs showed a wide range in severity of ischemia/ reperfusion injury. Intraalveolar edema fluid amounted to 77-909 mm3 with a mean of 448+/-250 mm3 as compared with 22+/-22 mm3 in control lungs (P<0.001). Perfusate oxygenation (deltaPO2) decreased from 30.5+/-15.2 to 21.7+/-15.2 mm Hg (P=0.05) recorded after 5 and 40 minutes of reperfusion. In experimental lungs, a surface fraction of 1% to 58% of total type I pneumocyte surface was damaged. Intraalveolar edema per gas exchange region (Vv ape,P) and deltaPO2 were related according to deltaPO2 = 96 - 60 x log10(Vv ape,P) [mm Hg]. The extent of epithelial injury did not correlate with deltaPO2 nor with intraalveolar edema, but increased significantly with PVR. Lectin- and immunohistochemistry revealed focal severe damage to the alveolar epithelium at the border of perivascular cuffs.  (+info)

Keratinocyte growth factor protects alveolar epithelium and endothelium from oxygen-induced injury in mice. (75/13068)

Keratinocyte growth factor (KGF) has been used successfully to prevent alveolar damage induced by oxygen exposure in rodents. However, this treatment was used intratracheally and before oxygen exposure, which limited its clinical application. In the present study, mice were treated with the recombinant human KGF intravenously before (days -2 and -1) or during (days 0 and +1) oxygen exposure. In both cases, lung damage was attenuated. KGF increased the number of cells incorporating bromodeoxyuridine (BrdU) in the septa and in bronchial epithelium of air-breathing mice but not of oxygen-exposed mice, indicating that the protective effect of KGF is not necessarily associated with proliferation. Oxygen-induced damage of alveolar epithelium and, unexpectedly, of endothelium was prevented by KGF treatment as seen by electron microscopy. We investigated the effect of KGF on different mechanisms known to be involved in oxygen toxicity. The induction of p53, Bax, and Bcl-x mRNAs during hyperoxia was to a large extent prevented by KGF. Surfactant proteins A and B mRNAs were not markedly modified by KGF. The anti-fibrinolytic activity observed in the alveoli during hyperoxia was to a large extent prevented by KGF, most probably by suppressing the expression of plasminogen activator inhibitor-1 (PAI-1) mRNA and protein. As PAI-1 -/- mice are more resistant to hyperoxia, KGF might act, at least in part, by decreasing the expression of this protease inhibitor and by restoring the fibrinolytic activity into the lungs.  (+info)

The development of M cells in Peyer's patches is restricted to specialized dome-associated crypts. (76/13068)

It is controversial whether the membranous (M) cells of the Peyer's patches represent a separate cell line or develop from enterocytes under the influence of lymphocytes on the domes. To answer this question, the crypts that produce the dome epithelial cells were studied and the distribution of M cells over the domes was determined in mice. The Ulex europaeus agglutinin was used to detect M cells in mouse Peyer's patches. Confocal microscopy with lectin-gold labeling on ultrathin sections, scanning electron microscopy, and laminin immuno-histochemistry were combined to characterize the cellular composition and the structure of the dome-associated crypts and the dome epithelium. In addition, the sites of lymphocyte invasion into the dome epithelium were studied after removal of the epithelium using scanning electron microscopy. The domes of Peyer's patches were supplied with epithelial cells that derived from two types of crypt: specialized dome-associated crypts and ordinary crypts differing not only in shape, size, and cellular composition but also in the presence of M cell precursors. When epithelial cells derived from ordinary crypts entered the domes, they formed converging radial strips devoid of M cells. In contrast to the M cells, the sites where lymphocytes invaded the dome epithelium were not arranged in radial strips, but randomly distributed over the domes. M cell development is restricted to specialized dome-associated crypts. Only dome epithelial cells that derive from these specialized crypts differentiate into M cells. It is concluded that M cells represent a separate cell line that is induced in the dome-associated crypts by still unknown, probably diffusible lymphoid factors.  (+info)

Role for IL-4 in macromolecular transport across human intestinal epithelium. (77/13068)

Increased epithelial permeability is associated with intestinal inflammation, but there is little information on factors that regulate barrier function in the absence of or before inflammation. We examined if interleukin (IL)-4, or serum from atopic individuals, could alter the barrier function of human colonic epithelial (T84) monolayers to antigenic-sized macromolecules. IL-4 and atopic serum significantly decreased T84 monolayer resistance and increased transepithelial horseradish peroxidase (HRP) transport. Bidirectional transport studies demonstrated that IL-4 selectively enhanced apical-to-basal movement of HRP. HRP transport induced by IL-4 was inhibited by cold (4 degrees C) and the tyrosine kinase inhibitor genistein, but not the protein kinase C inhibitor staurosporine. Electron microscopic analysis demonstrated that both transcellular and paracellular pathways were affected. Anti-IL-4 antibodies abolished the increase in HRP transport in response to both IL-4 and serum. We speculate that enhanced production of IL-4 in allergic conditions may be a predisposing factor to inflammation by allowing uptake of luminal antigens that gain access to the mucosal immune system.  (+info)

Inhibition of beta-adrenergic-dependent alveolar epithelial clearance by oxidant mechanisms after hemorrhagic shock. (78/13068)

Endogenous release of catecholamines is an important mechanism that can prevent alveolar flooding after brief but severe hemorrhagic shock. The objective of this study was to determine whether this catecholamine-dependent mechanism upregulates alveolar liquid clearance after prolonged hemorrhagic shock. Rats were hemorrhaged to a mean arterial pressure of 30-35 mmHg for 60 min and then resuscitated with a 4% albumin solution. Alveolar liquid clearance was measured 5 h later as the concentration of protein in the distal air spaces over 1 h after instillation of a 5% albumin solution into one lung. There was no upregulation of alveolar liquid clearance after prolonged hemorrhagic shock and fluid resuscitation despite a significant increase in plasma epinephrine levels. The intravenous or intra-alveolar administration of exogenous catecholamines did not upregulate alveolar liquid clearance. In contrast, catecholamine-mediated upregulation of alveolar liquid clearance was restored either by depletion of neutrophils with vinblastine, by the normalization of the concentration of reduced glutathione in the alveolar epithelial lining fluid by N-acetylcysteine, or by the inhibition of the conversion from xanthine dehydrogenase to xanthine oxidase. These experiments provide the first in vivo evidence that a neutrophil-dependent oxidant injury to the alveolar epithelium prevents the upregulation of alveolar fluid clearance by catecholamines in the absence of a major alteration in paracellular permeability to protein after prolonged hemorrhagic shock.  (+info)

Actin filament-membrane attachment: are membrane particles involved? (79/13068)

The association of actin filaments with membranes is an important feature in the motility of nonmuscle cells. We investigated the role of membrane particles in the attachment of actin filaments to membranes in those systems in which the attachment site can be identified. Freeze fractures through the end-on attachment site of the acrosomal filament bundles in Mytilus (mussel) and Limulus (horseshoe crab) sperm and the attachment site of the microvillar filament bundles in the brush border of intestinal epithelial cells were examined. There are no particles on the P face of the membrane at these sites in the sperm systems and generally none at these sites in microvilli. In microvilli, the actin filaments are also attached along their lengths to the membrane by bridges. When the isolated brush border is incubated in high concentrations of Mg++ (15 mM), the actin filaments form paracrystals and, as a result, the bridges are in register (330 A period). Under these conditions, alignment of the particles on the P face of the membrane into circumferential bands also occurs. However, these bands are generally separated by 800-900 A, indicating that all the bridges cannot be directly attached to membrane particles. Thus membrane particles are not directly involved in the attachment of actin filaments to membranes.  (+info)

Studies on the equine placenta II. Ultrastructure of the placental barrier. (80/13068)

In early pregnancy the equine placenta consists of a simple apposition of fetal and maternal epithelia, but it becomes more complex with the formation of microcotyledons between 75 and 100 days of gestation. Although the placental barrier maintains an epitheliochorial arrangement throughout the course of pregnancy, a thinning of the maternal epithelium and a progressive indentation of the chorionic epithelium by fetal capillaries shortens the length of the diffusion pathway and reduces the amount of placental tissue between fetal and maternal bloodstreams. These structural modifications may reflect the changing requirements of the fetus for O2 and other metabolites as gestation proceeds. During the first 200 days of pregnancy there is evidence of intense pinocytotic activity by the cells of the trophoblast. From the 100th day of pregnancy there is a pronounced development of smooth endoplasmic reticulum, while rough endoplasmic reticulum and irregular, dense, membrane-bound bodies are a prominent feature of the paranuclear cytoplasm from Day 200. These changes suggest that the cells of the trophoblast become more highly involved in synthetic processes with increasing gestational age.  (+info)