Regulation of body length and male tail ray pattern formation of Caenorhabditis elegans by a member of TGF-beta family. (1/2239)

We have identified a new member of the TGF-beta superfamily, CET-1, from Caenorhabditis elegans, which is expressed in the ventral nerve cord and other neurons. cet-1 null mutants have shortened bodies and male tail abnormal phenotype resembling sma mutants, suggesting cet-1, sma-2, sma-3 and sma-4 share a common pathway. Overexpression experiments demonstrated that cet-1 function requires wild-type sma genes. Interestingly, CET-1 appears to affect body length in a dose-dependent manner. Heterozygotes for cet-1 displayed body lengths ranging between null mutant and wild type, and overexpression of CET-1 in wild-type worms elongated body length close to lon mutants. In male sensory ray patterning, lack of cet-1 function results in ray fusions. Epistasis analysis revealed that mab-21 lies downstream and is negatively regulated by the cet-1/sma pathway in the male tail. Our results show that cet-1 controls diverse biological processes during C. elegans development probably through different target genes.  (+info)

Evolution by small steps and rugged landscapes in the RNA virus phi6. (2/2239)

Fisher's geometric model of adaptive evolution argues that adaptive evolution should generally result from the substitution of many mutations of small effect because advantageous mutations of small effect should be more common than those of large effect. However, evidence for both evolution by small steps and for Fisher's model has been mixed. Here we report supporting results from a new experimental test of the model. We subjected the bacteriophage phi6 to intensified genetic drift in small populations and caused viral fitness to decline through the accumulation of a deleterious mutation. We then propagated the mutated virus at a range of larger population sizes and allowed fitness to recover by natural selection. Although fitness declined in one large step, it was usually recovered in smaller steps. More importantly, step size during recovery was smaller with decreasing size of the recovery population. These results confirm Fisher's main prediction that advantageous mutations of small effect should be more common. We also show that the advantageous mutations of small effect are compensatory mutations whose advantage is conditional (epistatic) on the presence of the deleterious mutation, in which case the adaptive landscape of phi6 is likely to be very rugged.  (+info)

twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. (3/2239)

The Drosophila Pax-6 gene eyeless (ey) plays a key role in eye development. Here we show tht Drosophila contains a second Pax-6 gene, twin of eyeless (toy), due to a duplication during insect evolution. Toy is more similar to vertebrate Pax-6 proteins than Ey with regard to overall sequence conservation, DNA-binding function, and early expression in the embryo, toy and ey share a similar expression pattern in the developing visual system, and targeted expression of Toy, like Ey, induces the formation of ectopic eyes. Genetic and biochemical evidence indicates, however, that Toy functions upstream of ey by directly regulating the eye-specific enhancer of ey. Toy is therefore required for initiation of ey expression in the embryo and acts through Ey to activate the eye developmental program.  (+info)

Effects of mutations in DNA repair genes on formation of ribosomal DNA circles and life span in Saccharomyces cerevisiae. (4/2239)

A cause of aging in Saccharomyces cerevisiae is the accumulation of extrachromosomal ribosomal DNA circles (ERCs). Introduction of an ERC into young mother cells shortens life span and accelerates the onset of age-associated sterility. It is important to understand the process by which ERCs are generated. Here, we demonstrate that homologous recombination is necessary for ERC formation. rad52 mutant cells, defective in DNA repair through homologous recombination, do not accumulate ERCs with age, and mutations in other genes of the RAD52 class have varying effects on ERC formation. rad52 mutation leads to a progressive delocalization of Sir3p from telomeres to other nuclear sites with age and, surprisingly, shortens life span. We speculate that spontaneous DNA damage, perhaps double-strand breaks, causes lethality in mutants of the RAD52 class and may be an initial step of aging in wild-type cells.  (+info)

Coordination of the initiation of recombination and the reductional division in meiosis in Saccharomyces cerevisiae. (5/2239)

Early exchange (EE) genes are required for the initiation of meiotic recombination in Saccharomyces cerevisiae. Cells with mutations in several EE genes undergo an earlier reductional division (MI), which suggests that the initiation of meiotic recombination is involved in determining proper timing of the division. The different effects of null mutations on the timing of reductional division allow EE genes to be assorted into three classes: mutations in RAD50 or REC102 that confer a very early reductional division; mutations in REC104 or REC114 that confer a division earlier than that of wild-type (WT) cells, but later than that of mutants of the first class; and mutations in MEI4 that do not significantly alter the timing of MI. The very early mutations are epistatic to mutations in the other two classes. We propose a model that accounts for the epistatic relationships and the communication between recombination initiation and the first division. Data in this article indicate that double-strand breaks (DSBs) are not the signal for the normal delay of reductional division; these experiments also confirm that MEI4 is required for the formation of meiotic DSBs. Finally, if a DSB is provided by the HO endonuclease, recombination can occur in the absence of MEI4 and REC104.  (+info)

RAD50 and RAD51 define two pathways that collaborate to maintain telomeres in the absence of telomerase. (6/2239)

Telomere length is maintained by the de novo addition of telomere repeats by telomerase, yet recombination can elongate telomeres in the absence of telomerase. When the yeast telomerase RNA component, TLC1, is deleted, telomeres shorten and most cells die. However, gene conversion mediated by the RAD52 pathway allows telomere lengthening in rare survivor cells. To further investigate the role of recombination in telomere maintenance, we assayed telomere length and the ability to generate survivors in several isogenic DNA recombination mutants, including rad50, rad51, rad52, rad54, rad57, xrs2, and mre11. The rad51, rad52, rad54, and rad57 mutations increased the rate of cell death in the absence of TLC1. In contrast, although the rad50, xrs2, and mre11 strains initially had short telomeres, double mutants with tlc1 did not affect the rate of cell death, and survivors were generated at later times than tlc1 alone. While none of the double mutants of recombination genes and tlc1 (except rad52 tlc1) blocked the ability to generate survivors, a rad50 rad51 tlc1 triple mutant did not allow the generation of survivors. Thus RAD50 and RAD51 define two separate pathways that collaborate to allow cells to survive in the absence of telomerase.  (+info)

A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. (7/2239)

Exit from mitosis in all eukaroytes requires inactivation of the mitotic kinase. This occurs principally by ubiquitin-mediated proteolysis of the cyclin subunit controlled by the anaphase-promoting complex (APC). However, an abnormal spindle and/or unattached kinetochores activates a conserved spindle checkpoint that blocks APC function. This leads to high mitotic kinase activity and prevents mitotic exit. DBF2 belongs to a group of budding yeast cell cycle genes that when mutated prevent cyclin degradation and block exit from mitosis. DBF2 encodes a protein kinase which is cell cycle regulated, peaking in metaphase-anaphase B/telophase, but its function remains unknown. Here, we show the Dbf2p kinase activity to be a target of the spindle checkpoint. It is controlled specifically by Bub2p, one of the checkpoint components that is conserved in fission yeast and higher eukaroytic cells. Significantly, in budding yeast, Bub2p shows few genetic or biochemical interactions with other members of the spindle checkpoint. Our data now point to the protein kinase Mps1p triggering a new parallel branch of the spindle checkpoint in which Bub2p blocks Dbf2p function.  (+info)

Bacteriophage T4 rnh (RNase H) null mutations: effects on spontaneous mutation and epistatic interaction with rII mutations. (8/2239)

The bacteriophage T4 rnh gene encodes T4 RNase H, a relative of a family of flap endonucleases. T4 rnh null mutations reduce burst sizes, increase sensitivity to DNA damage, and increase the frequency of acriflavin resistance (Acr) mutations. Because mutations in the related Saccharomyces cerevisiae RAD27 gene display a remarkable duplication mutator phenotype, we further explored the impact of rnh mutations upon the mutation process. We observed that most Acr mutants in an rnh+ strain contain ac mutations, whereas only roughly half of the Acr mutants detected in an rnhDelta strain bear ac mutations. In contrast to the mutational specificity displayed by most mutators, the DNA alterations of ac mutations arising in rnhDelta and rnh+ backgrounds are indistinguishable. Thus, the increase in Acr mutants in an rnhDelta background is probably not due to a mutator effect. This conclusion is supported by the lack of increase in the frequency of rI mutations in an rnhDelta background. In a screen that detects mutations at both the rI locus and the much larger rII locus, the r frequency was severalfold lower in an rnhDelta background. This decrease was due to the phenotype of rnh rII double mutants, which display an r+ plaque morphology but retain the characteristic inability of rII mutants to grow on lambda lysogens. Finally, we summarize those aspects of T4 forward-mutation systems which are relevant to optimal choices for investigating quantitative and qualitative aspects of the mutation process.  (+info)