Cardiac autoimmunity in HIV related heart muscle disease. (73/32616)

OBJECTIVE: To assess the frequency of circulating cardiac specific autoantibodies in HIV positive patients with and without echocardiographic evidence of left ventricular dysfunction. SUBJECTS: 74 HIV positive patients including 28 with echocardiographic evidence of heart muscle disease, 52 HIV negative people at low risk of HIV infection, and 14 HIV negative drug users who had all undergone non-invasive cardiac assessment were studied along with a group of 200 healthy blood donors. RESULTS: Cardiac autoantibodies detected by indirect immunofluorescence (serum dilution 1/10) were more common in the HIV positive patients (15%), particularly the HIV heart muscle disease group (21%), than in HIV negative controls (3.5%) (both p < 0.001). By ELISA (dilution 1/320), abnormal anti-alpha myosin autoantibody concentrations were found more often in HIV patients with heart muscle disease (43%) than in HIV positive patients with normal hearts (19%) or in HIV negative controls (3%) (p < 0.05 and p < 0.001, respectively). Anti-alpha myosin autoantibody concentrations were greater in HIV positive patients than in HIV negative controls, regardless of cardiac status ((mean SD) 0.253 (0.155) v 0.170 (0.076); p = 0.003). In particular the mean antibody concentration was higher in the HIV heart muscle disease patients (0.291 (0.160) v 0.170 (0.076); p = 0.001) than in HIV negative controls. On follow up, six subjects with normal echocardiograms but raised autoantibody concentrations had died after a median of 298 days, three with left ventricular abnormalities at necropsy. This compared with a median survival of 536 days for 21 HIV positive patients with normal cardiological and immunological results. CONCLUSIONS: There is an increased frequency of circulating cardiac specific autoantibodies in HIV positive individuals, particularly those with heart muscle disease. The data support a role for cardiac autoimmunity in the pathogenesis of HIV related heart muscle disease, and suggest that cardiac autoantibodies may be markers of the development of left ventricular dysfunction in HIV positive patients with normal hearts.  (+info)

Preclinical development of human granulocyte-macrophage colony-stimulating factor-transfected melanoma cell vaccine using established canine cell lines and normal dogs. (74/32616)

Tumor vaccines and gene therapy have received significant attention as means of increasing cellular and humoral immune responses to cancer. We conducted a pilot study of seven research dogs to determine whether intradermal injection of canine tumor cells transfected via the Accell particle-mediated gene transfer device with the cDNA for human granulocyte-macrophage colony-stimulating factor (hGM-CSF) would generate biologically relevant levels of protein and result in demonstrable histological changes at sites of vaccination. Tumor cell vaccines of 10(7) irradiated canine melanoma cells were nontoxic, safe, and well tolerated. No significant alterations in blood chemistry values or hematological profiles were detected. A histological review of control vaccine sites revealed inflammatory responses predominated by eosinophils, whereas vaccine sites with hGM-CSF-transfected tumor cells had an influx of neutrophils and macrophages. Enzyme-linked immunosorbent assays of skin biopsies from vaccine sites had local hGM-CSF production (8.68-16.82 ng/site of injection) at 24 hours after injection and detectable levels (0.014-0.081 ng/site) for < or =2 weeks following vaccination. Flow cytometric analysis of hGM-CSF-transfected cells demonstrated < or =25% transfection efficiency, and hGM-CSF levels obtained during time-course assays demonstrated biologically relevant levels for both irradiated and nonirradiated samples. These data demonstrate the in vivo biological activity of irradiated hGM-CSF-transfected canine tumor cells and help provide evidence for a valid translational research model of spontaneous tumors.  (+info)

Regression of intracerebral rat glioma isografts by therapeutic subcutaneous immunization with interferon-gamma, interleukin-7, or B7-1-transfected tumor cells. (75/32616)

Progress in the definition of the roles of various costimulators and cytokines in determining the type and height of immune responses has made it important to explore genetically altered tumor cells expressing such molecules for therapeutic immunizations. We have studied the effect of therapeutic subcutaneous (s.c.) immunizations on the growth of preexisting intracerebral brain tumor isografts in the rat. Transfectant glioma cell clones expressing either rat interferon-gamma (IFN-gamma), rat interleukin-7 (IL-7), or rat B7-1 were selected. After irradiation (80 Gy) the clones were used for immunization (administered in up to four s.c. doses in a hind leg over 14-day intervals starting 1 day after the intracranial isografting of the parental tumor). Significant growth inhibition of the intracerebral parental tumors was induced by transfectants expressing IFN-gamma and IL-7, respectively. The strongest effect was observed with IFN-gamma-expressing cells, resulting in cures in 37% of the males and in 100% of the females. Immunization with IL-7 had a similar, strong initial effect, with significantly prolonged survival in the majority of the rats but a lower final cure rate (survival for >150 days). The B7-1-expressing tumor clones induced cures in seven of eight female rats; however, no cures were seen in the male rats. It was also shown that the B7-1-expressing cells were themselves strongly immunogenic in female rats, requiring high cell numbers to result in a progressively growing tumor upon s.c. isografting; this was not the case in male rats. As a whole, the results imply that despite the unfavorable location of intracerebral tumors, therapeutic s.c. immunizations with certain types of genetically altered tumor cells can induce complete regressions with permanent survival and without gross neurological or other apparent signs of brain damage. The present results demonstrate complete regressions when immunizations are initiated shortly after intracranial isografting, when the intracerebral tumor is small.  (+info)

Induction of antitumor immunity by direct intratumoral injection of a recombinant adenovirus vector expressing interleukin-12. (76/32616)

Direct intratumoral (i.t.) injection of adenoviruses (Ads) expressing specific immunostimulatory cytokines represents an attractive strategy for the clinical implementation of cytokine gene therapy of cancer. Interleukin-12 (IL-12) is a heterodimeric cytokine produced by antigen-presenting cells and promotes a T helper 1-like immune response. We have constructed an Ad vector (AdCMV-mIL-12) containing both chains of the murine IL-12 (mIL-12) gene linked by an internal ribosomal entry site sequence under the transcriptional control of the cytomegalovirus immediate-early gene promoter, which is able to mediate the transient expression of very high levels of biologically active mIL-12 both in vitro and in vivo. An i.t. injection of 4x10(8) plaque-forming units of AdCMV-mIL-12 resulted in a complete regression of day 7 established subcutaneous MC38 murine adenocarcinomas and MCA205 murine fibrosarcomas. Treated animals rejected a subsequent rechallenge with MC38 and MCA205, respectively, demonstrating the induction of long-lasting antitumor immunity. Specific antitumor cytotoxic T lymphocyte reactivity was detected in splenocytes harvested from treated animals. A significant increase in the numbers of both CD4+ and CD8+ T cells in the AdCMV-mIL-12-infected tumors was observed. Ad-mediated IL-12 gene therapy was also associated with measurable serum levels of mIL-12 and profound changes in the composition of splenic lymphocytes. Taken together, these results demonstrate the feasibility and efficacy of delivering IL-12 directly i.t. using a recombinant adenoviral vector.  (+info)

Granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF. (77/32616)

Clinical cancer gene therapy trials have generally focused on the transfer of cytokine cDNA to tumor cells ex vivo and with the subsequent vaccination of the patient with these genetically altered tumor cells. This approach results in high local cytokine concentrations that may account for the efficacy of this technique in animal models. We hypothesized that the expression of certain cytokines by tumor cells would be a superior immune stimulant when compared with local delivery of exogenous cytokines. Granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA in a nonviral expression vector was inserted into MDA-MB-231 (human breast cancer), M21 (human melanoma), B16 (murine melanoma), and P815 (mastocytoma) cells by particle-mediated gene transfer. The ability of transfected tumor cells to generate a tumor-specific immune response was evaluated in an in vitro mixed lymphocyte-tumor cell assay and in an in vivo murine tumor protection model. Peripheral blood lymphocytes cocultured with human GM-CSF-transfected tumor cells were 3- to 5-fold more effective at lysis of the parental tumor cells than were peripheral blood lymphocytes incubated with irradiated tumor cells and exogenous human GM-CSF. Mice immunized with murine GM-CSF-transfected irradiated B16 murine melanoma cells or P815 mastocytoma cells were protected from subsequent tumor challenge, whereas mice immunized with the nontransfected tumors and cutaneous transfection of murine GM-CSF cDNA at the vaccination site developed tumors more frequently. The results indicate that GM-CSF protein expressed in human and murine tumor cells is a superior antitumor immune stimulant compared with exogenous GM-CSF in the tumor microenvironment.  (+info)

A serosurvey of Borna disease virus infection in wild rats by a capture ELISA. (78/32616)

For a serological diagnostic test for Borna disease (BD), we developed a capture ELISA with specificity and sensitivity based on detection of antibodies against BD virus (BDV) p40 protein. Using our capture ELISA system, the antibody response of rats inoculated intracerebrally with BDV at 4 weeks after birth showed a sharp increase from 1 to 4 weeks postinoculation (p.i.) and a steady level after 5 weeks p.i. To investigate prevalence of BDV infection among wild rats, we examined sera of Rattus norvegicus in Kami-iso town, Oshima district, Hokkaido, suggesting that rats in this area had not been infected by BDV.  (+info)

Interaction of 75-106 actin peptide with myosin subfragment-1 and its trypsin modified derivative. (79/32616)

To explore the role of a hydrophobic domain of actin in the interaction with a myosin chain we have synthesized a peptide corresponding to residues 75-106 of native actin monomer and studied by fluorescence and ELISA the interaction (13+/-2.6x10(-6) M) with both S-1 and (27 kDa-50 kDa-20 kDa) S-1 trypsin derivative of myosin. The loop corresponding to 96-103 actin residues binds to the S-1 only in the absence of Mg-ATP and under similar conditions but not to the trypsin derivative S-1. Biotinylated C74-K95 and I85-K95 peptide fragments were purified after actin proteolysis with trypsin. The C74-K95 peptide interacted with both S-1 and the S-1 trypsin derivative with an apparent Kd(app) of 6+/-1.2x10(-6) M in the presence or absence of nucleotides. Although peptide fragment I85-K95 binds to S-1 with a Kd(app) of 12+/-2.4x10(-6) M, this fragment did not bind to the trypsin S-1 derivative. We concluded that the actin 85-95 sequence should be a potential binding site to S-1 depending of the conformational state of the intact 70 kDa segment of S-1.  (+info)

Antiganglioside antibodies in Guillain-Barre syndrome after a recent cytomegalovirus infection. (80/32616)

OBJECTIVE: To study the association between anti-ganglioside antibody responses and Guillan-Barre syndrome (GBS) after a recent cytomegalovirus (CMV) infection. METHODS: Enzyme linked immunosorbant assay (ELISA) was undertaken on serum samples from 14 patients with GBS with recent cytomegalovirus (CMV) infection (CMV+GBS) and 12 without (CMV-GBS), 17 patients with other neurological diseases (OND), 11 patients with a recent CMV infection but without neurological involvement, 11 patients with recent Epstein-Barr virus (EBV) infection but without neurological involvement, and 20 normal control (NC) subjects. RESULTS: IgM antibodies were found at 1:100 serum dilution to gangliosides GM2 (six of 14 patients), GM1 (four of 14), GD1a (three of 14) and GD1b (two of 14) in the serum samples of the CMV+GBS patients, but not in those of any of the CMV-GBS patients. IgM antibodies were also found to gangliosides GM1, GD1a, and GD1b in one of 11 OND patients, to ganglioside GM1 in one of 11 non- neurological CMV patients, and to ganglioside GD1b in one of 20 NC subjects. Some patients with EBV infection had IgM antibodies to gangliosides GM1 (five of 11), GM2 (three of 11), and GD1a (two of 11). However, the antibodies to ganglioside GM2 had a low titre, none being positive at 1:200 dilution, whereas five of the CMV+GBS serum samples remained positive at this dilution. CONCLUSION: Antibodies to ganglioside GM2 are often associated with GBS after CMV infection, but their relevance is not known. It is unlikely that CMV infection and anti-ganglioside GM2 antibodies are solely responsible and an additional factor is required to elicit GBS.  (+info)