cis-Acting elements responsible for low-temperature-inducible expression of the gene coding for the thermolabile isocitrate dehydrogenase isozyme of a psychrophilic bacterium, Vibrio sp. strain ABE-1. (65/8768)

Transcriptional control of the low-temperature-inducible icdII gene, encoding the thermolabile isocitrate dehydrogenase of a psychrophilic bacterium, Vibrio sp. strain ABE-1, was found to be mediated in part by a transcriptional silencer locating at nucleotide positions -560 to -526 upstream from the transcription start site of icdII. Deletion of the silencer resulted in a 20-fold-increased level of expression of the gene at low temperature (15 degrees C) but not at high temperature (37 degrees C). In addition, a CCAAT sequence located 2 bases upstream of the -35 region was found to be essential for the low-temperature-inducible expression of the gene. By deletion of this sequence, low-temperature-dependent expression of the gene was completely abolished. The ability of the icdII promoter to control the expression of other genes was confirmed by using a fusion gene containing the icdII promoter region and the promoterless icdI open reading frame, which encodes the non-cold-inducible isocitrate dehydrogenase isozyme of Vibrio sp. strain ABE-1. Escherichia coli transformants harboring icdII acquired an ability to grow rapidly at low temperature.  (+info)

Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells. (66/8768)

We cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Nicotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of expression of mRNA for the aleurone RNase revealed that, like the pattern for alpha-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase alpha-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.  (+info)

Mechanism of adipose tissue iNOS induction in endotoxemia. (67/8768)

The aim of the present study was to investigate the mechanism of adipose tissue inducible nitric oxide synthase (iNOS) induction in endotoxemia. Systemic administration of the bacterial endotoxin lipopolysaccharide (LPS) to rats for +info)

Expression of 25(OH)D3 24-hydroxylase in distal nephron: coordinate regulation by 1,25(OH)2D3 and cAMP or PTH. (68/8768)

Previous studies using microdissected nephron segments reported that the exclusive site of renal 25-hydroxyvitamin D3-24-hydroxylase (24OHase) activity is the renal proximal convoluted tubule (PCT). We now report the presence of 24OHase mRNA, protein, and activity in cells that are devoid of markers of proximal tubules but express characteristics highly specific for the distal tubule. 24OHase mRNA was undetectable in vehicle-treated mouse distal convoluted tubule (DCT) cells but was markedly induced when DCT cells were treated with 1,25 dihydroxyvitamin D3 [1,25(OH)2D3]. 24OHase protein and activity were also identified in DCT cells by Western blot analysis and HPLC, respectively. 8-Bromo-cAMP (1 mM) or parathyroid hormone [PTH-(1-34); 10 nM] was found to potentiate the effect of 1, 25(OH)2D3 on 24OHase mRNA. The stimulatory effect of cAMP or PTH on 24OHase expression in DCT cells suggests differential regulation of 24OHase expression in the PCT and DCT. In the presence of cAMP and 1, 25(OH)2D3, a four- to sixfold induction in vitamin D receptor (VDR) mRNA was observed. VDR protein, as determined by Western blot analysis, was also enhanced in the presence of cAMP. Transient transfection analysis in DCT cells with rat 24OHase promoter deletion constructs demonstrated that cAMP enhanced 1, 25(OH)2D3-induced 24OHase transcription but this enhancement was not mediated by cAMP response elements (CREs) in the 24OHase promoter. We conclude that 1) although the PCT is the major site of localization of 24OHase, 24OHase mRNA and activity can also be localized in the distal nephron; 2) both PTH and cAMP modulate the induction of 24OHase expression by 1,25(OH)2D3 in DCT cells in a manner different from that reported in the PCT; and 3) in DCT cells, upregulation of VDR levels by cAMP, and not an effect on CREs in the 24OHase promoter, is one mechanism involved in the cAMP-mediated modulation of 24OHase transcription.  (+info)

Regulation of 15-lipoxygenase expression and mucus secretion by IL-4 in human bronchial epithelial cells. (69/8768)

Our laboratory has recently shown that mucus differentiation of cultured normal human tracheobronchial epithelial (NHTBE) cells is accompanied by the increased expression of 15-lipoxygenase (15-LO). We used differentiated NHTBE cells to investigate the regulation of 15-LO expression and mucus secretion by inflammatory cytokines. Interleukin (IL)-4 and IL-13 dramatically enhanced the expression of 15-LO, whereas tumor necrosis factor-alpha, IL-1beta, and interferon (IFN)-gamma had no effect. These cytokines did not increase the expression of cyclooxygenase-2, with the exception of a modest induction by IL-1beta. The IL-4-induced 15-LO expression was concentration dependent, and mRNA and protein expression increased within 3 and 6 h, respectively, after IL-4 treatment. In metabolism studies with intact cells, 15-hydroxyeicosatetraenoic acid (15-HETE) and 13-hydroxyoctadecadienoic acid (13-HODE) were the major metabolites formed from exogenous arachidonic acid and linoleic acid. No prostaglandins were detected. IL-4 treatment dramatically increased the formation of 13-HODE and 15-HETE compared with that in untreated NHTBE cells, and several additional 15-LO metabolites were observed. Pretreatment of NHTBE cells with IFN-gamma or dexamethasone did not inhibit the IL-4-induced expression of 15-LO except at high concentrations (100 ng/ml of IFN-gamma and 10 microM dexamethasone). IL-4 treatment inhibited mucus secretion and attenuated the expression of the mucin genes MUC5AC and MUC5B at 12-24 h after treatment. Addition of 15-HETE precursor and 13-HODE precursor to the cultures did not alter mucin secretion or mucin gene expression. On the basis of the data presented, we conclude that the increase in 15-LO expression by IL-4 and attenuation of mucus secretion may be independent biological events.  (+info)

DRONC, an ecdysone-inducible Drosophila caspase. (70/8768)

Caspases play an essential role in the execution of programmed cell death in metazoans. Although 14 caspases are known in mammals, only a few have been described in other organisms. Here we describe the identification and characterization of a Drosophila caspase, DRONC, that contains an amino terminal caspase recruitment domain. Ectopic expression of DRONC in cultured cells resulted in apoptosis, which was inhibited by the caspase inhibitors p35 and MIHA. DRONC exhibited a substrate specificity similar to mammalian caspase-2. DRONC is ubiquitously expressed in Drosophila embryos during early stages of development. In late third instar larvae, dronc mRNA is dramatically up-regulated in salivary glands and midgut before histolysis of these tissues. Exposure of salivary glands and midgut isolated from second instar larvae to ecdysone resulted in a massive increase in dronc mRNA levels. These results suggest that DRONC is an effector of steroid-mediated apoptosis during insect metamorphosis.  (+info)

Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. (71/8768)

RNA-specific adenosine deaminase (ADAR1) catalyzes the deamination of adenosine to inosine in viral and cellular RNAs. Two size forms of the ADAR1 editing enzyme are known, an IFN-inducible approximately 150-kDa protein and a constitutively expressed N-terminally truncated approximately 110-kDa protein. We have now identified alternative exon 1 structures of human ADAR1 transcripts that initiate from unique promoters, one constitutively expressed and the other IFN inducible. Cloning and sequence analyses of 5'-rapid amplification of cDNA ends (RACE) cDNAs from human placenta established a linkage between exon 2 of ADAR1 and two alternative exon 1 structures, designated herein as exon 1A and exon 1B. Analysis of RNA isolated from untreated and IFN-treated human amnion cells demonstrated that exon 1B-exon 2 transcripts were synthesized in the absence of IFN and were not significantly altered in amount by IFN treatment. By contrast, exon 1A-exon 2 transcripts were IFN inducible. Transient transfection analysis with reporter constructs led to the identification of two functional promoters, designated PC and PI. Exon 1B transcripts were initiated from the PC promoter whose activity in transient transfection reporter assays was not increased by IFN treatment. The 107-nt exon 1B mapped 14.5 kb upstream of exon 2. The 201-nt exon 1A that mapped 5.4 kb upstream of exon 2 was initiated from the interferon-inducible PI promoter. These results suggest that two promoters, one IFN inducible and the other not, initiate transcription of the ADAR1 gene, and that alternative splicing of unique exon 1 structures to a common exon 2 junction generates RNA transcripts with the deduced coding capacity for either the constitutively expressed approximately 110-kDa ADAR1 protein (exon 1B) or the interferon-induced approximately 150-kDa ADAR1 protein (exon 1A).  (+info)

Induction and regulation of macrophage metalloelastase by hyaluronan fragments in mouse macrophages. (72/8768)

Although the metalloproteinase murine metalloelastase (MME) has been implicated in lung disorders such as emphysema and pulmonary fibrosis, the mechanisms regulating MME expression are unclear. Low m.w. fragments of the extracellular matrix component hyaluronan (HA) that accumulate at sites of lung inflammation are capable of inducing inflammatory gene expression in macrophages (Mphi). The purpose of this study was to examine the effect of HA fragments on the expression of MME in alveolar Mphi. The mouse alveolar Mphi cell line MH-S was stimulated with HA fragments over time, total RNA was isolated, and Northern blot analysis was performed. HA fragments induced MME mRNA in a time-dependent fashion, with maximal levels at 6 h. HA fragments also induced MME protein expression as well as enzyme activity. The induction of MME gene expression was specific for low m.w. HA fragments and dependent upon new protein synthesis; it occurred at the level of gene transcription. We also examined the effect of HA fragments on MME expression in inflammatory alveolar Mphi from bleomycin-injured rat lungs. Although normal rat alveolar Mphi did not express MME mRNA in response to HA fragments, alveolar Mphi from the bleomycin-treated rats responded to HA fragment stimulation by increasing MME mRNA levels. Furthermore, baseline and HA fragment-induced MME gene expression in alveolar Mphi from bleomycin-treated rats was inhibited by IFN-gamma. These data suggest that HA fragments may be an important mechanism for the expression of MME by Mphi in inflammatory lung disorders.  (+info)