Biodegradation of cyclohexylamine by Brevibacterium oxydans IH-35A. (17/3283)

A bacterial strain capable of growing on cyclohexylamine (CHAM) was isolated by using enrichment and isolation techniques. The strain isolated, strain IH-35A, was classified as a member of the genus Brevibacterium. The results of growth and enzyme studies are consistent with degradation of CHAM via cyclohexanone (CHnone), 6-hexanolactone, 6-hydroxyhexanoate, and adipate. Cell extracts obtained from this strain grown on CHAM contained CHAM oxidase, and the model for CHAM oxidation by this enzyme was similar to the model for deamino oxidation of amine by amine oxidase.  (+info)

Microbial degradation of octamethylcyclotetrasiloxane. (18/3283)

The microbial degradation of low-molecular-weight polydimethylsiloxanes was investigated through laboratory experiments. Octamethylcyclotetrasiloxane was found to be biodegraded under anaerobic conditions in composted sewage sludge, as monitored by the occurrence of the main polydimethylsiloxane degradation product, dimethylsilanediol, compared to that found in experiments with sterilized control samples.  (+info)

Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. (19/3283)

The aim of this study was to compare results obtained by eight different short-term assays of estrogenlike actions of chemicals conducted in 10 different laboratories in five countries. Twenty chemicals were selected to represent direct-acting estrogens, compounds with estrogenic metabolites, estrogenic antagonists, and a known cytotoxic agent. Also included in the test panel were 17beta++-estradiol as a positive control and ethanol as solvent control. The test compounds were coded before distribution. Test methods included direct binding to the estrogen receptor (ER), proliferation of MCF-7 cells, transient reporter gene expression in MCF-7 cells, reporter gene expression in yeast strains stably transfected with the human ER and an estrogen-responsive reporter gene, and vitellogenin production in juvenile rainbow trout. 17beta-Estradiol, 17alpha-ethynyl estradiol, and diethylstilbestrol induced a strong estrogenic response in all test systems. Colchicine caused cytotoxicity only. Bisphenol A induced an estrogenic response in all assays. The results obtained for the remaining test compounds--tamoxifen, ICI 182.780, testosterone, bisphenol A dimethacrylate, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol dodecylethoxylate, butylbenzylphthalate, dibutylphthalate, methoxychlor, o,p'-DDT, p,p'-DDE, endosulfan, chlomequat chloride, and ethanol--varied among the assays. The results demonstrate that careful standardization is necessary to obtain a reasonable degree of reproducibility. Also, similar methods vary in their sensitivity to estrogenic compounds. Thus, short-term tests are useful for screening purposes, but the methods must be further validated by additional interlaboratory and interassay comparisons to document the reliability of the methods.  (+info)

Geographic exposure modeling: a valuable extension of geographic information systems for use in environmental epidemiology. (20/3283)

Geographic modeling of individual exposures using air pollution modeling techniques can help in both the design of environmental epidemiologic studies and in the assignment of measures that delineate regions that receive the highest exposure in space and time. Geographic modeling can help in the interpretation of environmental sampling data associated with airborne concentration or deposition, and can act as a sophisticated interpolator for such data, allowing values to be assigned to locations between points where the data have actually been collected. Recent advances allow for quantification of the uncertainty in a geographic model and the resulting impact on estimates of association, variability, and study power. In this paper we present the terminology and methodology of geographic modeling, describe applications to date in the field of epidemiology, and evaluate the potential of this relatively new tool.  (+info)

Cancer, heart disease, and diabetes in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. (21/3283)

BACKGROUND: In 1997, the International Agency for Research on Cancer classified 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a group 1 human carcinogen, based largely on four highly exposed industrial cohorts that showed an excess of all cancers combined. In this study, we extended the follow-up period for the largest of these cohorts by 6 years and developed a job-exposure matrix. METHODS: We did cohort mortality analyses involving 5132 chemical workers at 12 U.S. plants by use of life table techniques (U.S. population referent) and Cox regression (internal referent). We conducted exposure-response analyses for 69% of the cohort with adequate work history data and adequate plant data on TCDD contamination. All P values are two-sided. RESULTS: The standardized mortality ratio (SMR) for all cancers combined was 1.13 (95% confidence interval = 1.02-1.25). We found statistically significant positive linear trends in SMRs with increasing exposure for all cancers combined and for lung cancer. The SMR for all cancers combined for the highest exposure group was 1.60 (95% confidence interval = 1.15-1.82). SMRs for heart disease showed a weak increasing trend with higher exposure (P = .14). Diabetes (any mention on the death certificate) showed a negative exposure-response trend. Internal analyses with Cox regression found statistically significant trends for cancer (15-year lag time) and heart disease (no lag). CONCLUSIONS: Our analyses suggest that high TCDD exposure results in an excess of all cancers combined, without any marked specificity. However, excess cancer was limited to the highest exposed workers, with exposures that were likely to have been 100-1000 times higher than those experienced by the general population and similar to the TCDD levels used in animal studies.  (+info)

Toxicology and carcinogenesis studies of pentachlorophenol in rats. (22/3283)

Pentachlorophenol (PCP) has been used as an herbicide, algaecide, defoliant, wood preservative, germicide, fungicide, and molluscicide. A 28-day toxicity study of PCP in F344/N rats of both sexes was conducted to select dose levels for a carcinogenicity study. Groups of 10 male and 10 female rats were given 0, 200, 400, 800, 1600, or 3200 ppm PCP in feed for 28 days. The incidences of minimal to mild hepatocyte degeneration in males and females exposed to 400 ppm or greater and the incidences of centrilobular hepatocyte hypertrophy in the 3200-ppm groups were increased. For carcinogenicity studies, groups of 50 male and 50 female F344/N rats were fed diets containing 200, 400, or 600 PCP for 2 years. A stop-exposure group of 60 male and 60 female rats received 1000 ppm of PCP in feed for 52 weeks and control feed thereafter for the remainder of the 2-year studies; 10 male and 10 female rats were evaluated at 7 months. Survival of 600-ppm males was significantly greater than that of the controls; survival of all other exposed groups was similar to that of the control groups. Mean body weights of the 400- and 600-ppm groups were generally less than those of the controls throughout the studies. There was no evidence of carcinogenic activity of PCP in male or female rats fed diets containing 200, 400, or 600 ppm for 2 years. Stop-exposure study males and females regained a transitory body weight reduction by the end of the 2 year study, and males had better survival than the controls. At a 7-month interim evaluation, the incidences of centrilobular hypertrophy in stop-exposure males and females exceeded those in the controls. At 2 years, malignant mesothelioma originating from the tunica vaginalis was present in 9 1000-ppm males and 1 control male (p = 0.014). Nasal squamous cell carcinomas were present in five 1000-ppm males and 1 control male. This incidence was not significantly increased but exceeded the historical control range (0-4%). Based on the increased incidences of mesotheliomas and nasal tumors, there was some evidence of carcinogenic activity of PCP in male rats given a diet containing 1000 ppm for 1 year followed by control diet for 1 year. There was no evidence of PCP carcinogenic activity in stop-exposure female rats.  (+info)

Fetal growth and maternal exposure to particulate matter during pregnancy. (23/3283)

Prior studies reported an association between ambient air concentrations of total suspended particles and SO2 during pregnancy and adverse pregnancy outcomes. We examined the possible impact of particulate matter up to 10 microm (PM10) and up to 2.5 microm (PM2. 5) in size on intrauterine growth retardation (IUGR) risk in a highly polluted area of Northern Bohemia (Teplice District). The study group includes all singleton full-term births of European origin over a 2-year period in the Teplice District. Information on reproductive history, health, and lifestyle was obtained from maternal questionnaires. The mean concentrations of pollutants for each month of gestation were calculated using continuous monitoring data. Three intervals (low, medium, and high) were constructed for each pollutant (tertiles). Odds ratios (ORs) for IUGR for PM10 and PM2.5 levels were generated using logistic regression for each month of gestation after adjustment for potential confounding factors. Adjusted ORs for IUGR related to ambient PM10 levels in the first gestational month increased along the concentration intervals: medium 1.62 [95% confidence interval (CI), 1.07-2.46], high 2.64 (CI, 1.48-4.71). ORs for PM2.5 were 1.26 (CI, 0.81-1.95) and 2.11 (CI, 1. 20-3.70), respectively. No other associations of IUGR risk with particulate matter were found. Influence of particles or other associated air pollutants on fetal growth in early gestation is one of several possible explanations of these results. Timing of this effect is compatible with a current hypothesis of IUGR pathogenesis. Seasonal factors, one of the other possible explanations, is less probable. More investigation is required to examine these findings and alternative explanations.  (+info)

The environment and asthma in U.S. inner cities. (24/3283)

The prevalence and severity of asthma has increased in the last 20 years, and the greatest increase has been seen among children and young adults living in U.S. inner cities. The reasons for this increase are obviously complex, but include environmental exposures to allergens and pollutants, changing patterns of medication, and the psychosocial stresses of living in poor inner-city neighborhoods. This paper presents an overview of environmental, immunologic, and genetic factors associated with asthma morbidity and mortality. This overview can be used to provide a framework for designing an interdisciplinary research program to address the complexities of asthma etiology and exacerbation. The strongest epidemiologic association has been found between asthma morbidity and the exposure of immunologically sensitive asthmatic patients to airborne allergens. Our current understanding of the process of sensitization suggests that there is a strong genetic predisposition to form IgE to allergenic proteins on airborne particles. Much of this work has been conducted with animal models, but in a number of instances, specific confirmation has been reported in humans. Sensitized individuals respond to inhaled exposure with immediate mast-cell dependent inflammation that may be augmented by pollutant particles, especially diesel exhaust particles. Relatively little is known about the methods of assessing exposure to airborne pollutants, especially biologically active particulates. However, to examine the relationship of morbidity in genetically predisposed individuals, it will be important to determine the most relevant method of making this assessment.  (+info)