Environmental measurements of total dust and fiber concentration in manufacturer and user of man-made mineral fibers. (49/5557)

Man-made mineral fibers (MMMF), most of which are referred to as man-made vitreous fibers (MMVF), are mostly amorphous silicates manufactured from glass, rock, or other minerals. Analysis for MMMF have been restricted largely to the measurement of total airborne mass concentrations, but more recently to the determination of airborne fiber levels by phase contrast optical microscopy. In Korea, many small factories are related with manufacturing and using MMMF without any special evaluation of environmental measurements. Though MMMF are known as the substitute of asbestos and their toxicity are regarded as very low, MMMF do not totally excluded from the respiratory and/or skin diseases now. Therefore, we evaluated the environments of many workplaces with total dust and fiber concentration. Most dust and fiber concentrations were below threshold limit value (TLV) at various industries and working processes. However, these data showed a slight relationship between total dust and fiber concentration.  (+info)

Exposure to hexavalent chromium does not increase 8-hydroxydeoxyguanosine levels in Korean chromate pigment workers. (50/5557)

This study was performed to determine whether chromium exposure increased 8-hydroxydeoxyguanosine levels in respiratory epithelial and white blood cells of chromate pigment workers. The subjects of this study were 22 chromium pigment workers and 16 controls in a chromate pigments factory. To estimate the level of exposure, hexavalent chromium concentrations in the factory air were measured. Chrominum concentrations of venous blood and spot urine, and 8-hydroxydeoxyguanosine levels in DNA extracted from sputum and white blood cells were determined. Correlation coefficients were calculated between them and their statistical significance was tested. Hexavalent chromium concentration in the factory air ranged from below limit of detection to 0.5150 mg/m3. Chromium levels in blood and 8-hydroxydeoxyguanosine levels in DNA extracted from venous blood and sputum were not statistically different between the two groups. Urine chromium level was significantly higher among workers. Among the correlation coefficients between blood chromium concentration, urine chromium concentration, blood 8-OH-dG level, and sputum 8-OH-dG level, none was statistically significant for workers, controls, and total subjects. Duration of employment did not show any significant correlation with those four variables, either. These results suggest that neither the hydroxyl radical nor 8-hydroxydeoxyguanosine is formed by the reduction of hexavalent chromium, or that one or both of these is formed and then effectively removed by oxygen free radical scavengers or 8-hydroxydeoxyguanosine repair enzymes. Since increased exposure to hexavalent chromium did not result in increased 8-hydroxydeoxyguanosine levels, it is unlikely that hexavalent chromium induces lung cancer through 8-hydroxydeoxyguanosine formation.  (+info)

Assessment of occupational exposures in a general population: comparison of different methods. (51/5557)

OBJECTIVES: To evaluate the relative merits of job specific questionnaires and various alternative assessment methods of occupational exposures often used in general population studies. METHODS: Subjects were participants in a hospital based case-control study of risk factors for male infertility. Estimates of exposure to organic solvents and chromium, based on job specific questionnaires, generic questionnaires, self reports of exposure, an external job exposure matrix (JEM), and a population specific JEM were compared with passive diffuse dosimeter results and measurements in urine. Urine samples from the end of the shift were analysed for metabolites of toluene, xylene, several glycol ethers, trichloroethylene, and chromium. Passive dosimeter date, metabolites of specific solvents, and urinary chromium concentrations were available for 89, 267, and 156 subjects, respectively. The alternative methods and measurements in urine were compared by means of the Cohen's kappa statistic and by computing the positive predictive value, sensitivity, and specificity of the alternative methods against measurements in urine. RESULTS: Passive dosimeter results indicated that exposure classifications with job specific questionnaire information could discriminate between high and low exposures. The kappa coefficients were < 0.4, so agreement between the various methods and measurements in urine was poor. Sensitivity of the methods ranged from 0.21 to 0.85, whereas specificity ranged from 0.34 to 0.94. Positive predictive values ranged from 0.19 to 0.58, with the highest values for job specific questionnaires. CONCLUSIONS: The results indicate that the implementation of job specific questionnaires in a general population study might be worth the extra expense it entails, bearing in mind the paramount importance of avoiding false positive exposure estimates when exposure prevalence is low.  (+info)

Chronic beryllium disease and cancer risk estimates with uncertainty for beryllium released to the air from the Rocky Flats Plant. (52/5557)

Beryllium was released into the air from routine operations and three accidental fires at the Rocky Flats Plant (RFP) in Colorado from 1958 to 1989. We evaluated environmental monitoring data and developed estimates of airborne concentrations and their uncertainties and calculated lifetime cancer risks and risks of chronic beryllium disease to hypothetical receptors. This article discusses exposure-response relationships for lung cancer and chronic beryllium disease. We assigned a distribution to cancer slope factor values based on the relative risk estimates from an occupational epidemiologic study used by the U.S. Environmental Protection Agency (EPA) to determine the slope factors. We used the regional atmospheric transport code for Hanford emission tracking atmospheric transport model for exposure calculations because it is particularly well suited for long-term annual-average dispersion estimates and it incorporates spatially varying meteorologic and environmental parameters. We accounted for model prediction uncertainty by using several multiplicative stochastic correction factors that accounted for uncertainty in the dispersion estimate, the meteorology, deposition, and plume depletion. We used Monte Carlo techniques to propagate model prediction uncertainty through to the final risk calculations. We developed nine exposure scenarios of hypothetical but typical residents of the RFP area to consider the lifestyle, time spent outdoors, location, age, and sex of people who may have been exposed. We determined geometric mean incremental lifetime cancer incidence risk estimates for beryllium inhalation for each scenario. The risk estimates were < 10(-6). Predicted air concentrations were well below the current reference concentration derived by the EPA for beryllium sensitization.  (+info)

Global assessment of deforestation related to tobacco farming. (53/5557)

OBJECTIVES: To assess the global amount of forest and woodland consumed annually for curing tobacco between 1990 and 1995; to estimate tobacco's share in total deforestation; to rank tobacco-growing countries by the degree of impact of tobacco deforestation; and to indicate environmental criticality emerging from tobacco's impact on forest resources. DESIGN: Production of country-specific estimates of forests/woodlands needed and depleted on the basis of growing stock/increment of woody biomass involved and wood consumption of tobacco. Comparison of results with secondary statistics on forest cover, deforestation, and population development. RESULTS: An estimated 200,000 ha of forests/woodlands are removed by tobacco farming each year. Deforestation mainly occurs in the developing world, amounting to 1.7% of global net losses of forest cover or 4.6% of total national deforestation. Environmental criticality exists or is emerging in 35 countries with an estimated serious, high, and medium degree of tobacco-related deforestation, mainly in southern Africa, middle east, south, and east Asia, South America, and the Caribbean. CONCLUSION: The hypothesis that deforestation from tobacco production does not have a significant negative effect has to be challenged. For empirical validation, the globally significant pattern of estimated tobacco-related environmental damage ought to be included in international research agendas on global environmental change, to become an integral and rational part of tobacco control policy.  (+info)

Consumption and production waste: another externality of tobacco use. (54/5557)

OBJECTIVE: To describe the waste produced by and environmental implications of individual cigarette consumption (filter tips, packages, and cartons) and tobacco manufacturing. STUDY SELECTION: All available articles and reports published since 1970 related to cigarette consumption and production waste were reviewed. DATA SOURCES: Global cigarette consumption data were used to estimate cigarette butt and packaging waste quantities. Data from the Center for Marine Conservation's International Coastal Cleanup Project were used to describe some environmental impacts of tobacco-related trash. Data from the United States Environmental Protection Agency's (EPA's) Toxics Release Inventory and reported global cigarette consumption totals were used to estimate waste production from cigarette manufacturing. DATA EXTRACTION AND SYNTHESIS: In 1995, an estimated 5.535 trillion cigarettes (27,675 million cartons and 276,753 million packages) were sold by the tobacco industry globally. Some of the wastes from these products were properly deposited, but a large amount of tobacco consumption waste ends up in the environment. Some is recovered during environmental clean-up days. For the past eight years (1990-1997), cigarette butts have been the leading item found during the International Coastal Cleanup Project; they accounted for 19.1% of all items collected in 1997. The tobacco manufacturing process produces liquid, solid, and airborne waste. Among those wastes, some materials, including nicotine, are designated by the EPA as Toxics Release Inventory (TRI) chemicals. These are possible environmental health hazards. In 1995, the global tobacco industry produced an estimated 2262 million kilograms of manufacturing waste and 209 million kilograms of chemical waste. In addition, total nicotine waste produced in the manufacture of reduced nicotine cigarettes was estimated at 300 million kilograms. CONCLUSIONS: Laws against littering relative to cigarette butts could be better enforced. Additional taxes might be levied on cigarette products that would then be directed to environmental clean-up efforts. The tobacco industry should improve the biodegradability of filters, reduce packaging waste, and educate its customers. Worksites and public buildings should be encouraged or required to supply appropriate disposal mechanisms at all building entrances. Public awareness campaigns about the magnitude and prevention of cigarette consumption waste could be developed through partnerships among environmental groups, health organisations, and environmental protection agencies. Tobacco production waste should be a source of concern and regulation by governments throughout the world; it contains numerous chemicals which may be considered health hazards, not the least of which is nicotine produced in the manufacture of low-nicotine cigarettes.  (+info)

Role of individual susceptibility in risk assessment of pesticides. (55/5557)

OBJECTIVES: This study presents criteria for assessing the individual pesticide burden of workers in the chemical industry. METHODS: A group of 1003 workers exposed to methylparathion or ethylparathion (alkyl phosphates), propoxur (carbamate), or cyfluthrin (pyrethroid) was investigated. After exposure to methylparathion or ethylparathion the methylparathion or ethylparathion and methylparaoxon or ethylparaoxon concentrations in plasma, the p-nitrophenol concentration in urine, and the activities of cholinesterase and acetylcholinesterase were measured. For exposure to propoxur the propoxur concentration in plasma, the 2-isopropoxyphenol concentration in urine, and the cholinesterase and acetylcholinesterase activities were measured. For exposure to cyfluthrin the cyfluthrin concentration in plasma was measured. RESULTS: At the same propoxur concentration only workers with a low individual acetylcholinesterase activity reported symptoms. Workers who metabolised cyfluthrin rapidly reported less symptoms than workers with a lower rate of metabolism. This tendency was also evident in cases of mixed exposure (cyfluthrin and methylparathion). CONCLUSIONS: In the assessment of exposure to pesticides susceptibility of the individual person has to be considered.  (+info)

Improved method to measure urinary alkoxyacetic acids. (56/5557)

OBJECTIVES: To simplify the current preparation of samples, and to improve the specificity and reliability of the conventional analytical methods to measure urinary alkoxyacetic acids. METHODS: Samples containing alkoxyacetic acids including methoxy, ethoxy, and butoxyacetic acids (MAA, EAA, and BAA) were acidified with HCl and extracted with a mixed solvent of methylene chloride and isopropyl alcohol, then analysed by gas chromatography/mass spectrometry (GC/MS). RESULTS: Optimal results were obtained when pH was 1.05-1.45, the ratio of methylene chloride and isopropyl alcohol was 2:1, and when extraction time was 10 minutes. Over the concentration range 0.3-200 micrograms/ml, MAA, EAA, and BAA could be determined with a pooled coefficient of variation (nine concentrations, six replicate samples) of 5.55%, 6.37%, and 6.41%, respectively. Urine samples were stable for at least 5 months and 3 freeze-thaw cycles at -20 degrees C. The limits of detection of MAA, EAA, and BAA were 0.055, 0.183, and 0.009 microgram/ml, respectively. The matrix effect of urine samples was negligible for MAA and EAA, but were marginally significant for BAA. The average recoveries of alkoxyacetic acids were 99%-101%. In urine samples MAA from 15 exposed workers showed a strong linear correlation (r = 0.999, slope = 1.01) between the new GC/MS method and Sakai's GC method. CONCLUSIONS: The simplified non-derivatisation pretreatment of samples coupled with GC/MS can provide a specific, sensitive, simple, safe, and reliable method for the biological monitoring of occupational exposure of ethylene glycol ethers.  (+info)