Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. (1/274)

Angiosarcomas apparently derive from blood vessel endothelial cells; however, occasionally their histological features suggest mixed origin from blood and lymphatic endothelia. In the absence of specific positive markers for lymphatic endothelia the precise distinction between these components has not been possible. Here we provide evidence by light and electron microscopic immunohistochemistry that podoplanin, a approximately 38-kd membrane glycoprotein of podocytes, is specifically expressed in the endothelium of lymphatic capillaries, but not in the blood vasculature. In normal skin and kidney, podoplanin colocalized with vascular endothelial growth factor receptor-3, the only other lymphatic marker presently available. Complementary immunostaining of blood vessels was obtained with established endothelial markers (CD31, CD34, factor VIII-related antigen, and Ulex europaeus I lectin) as well as podocalyxin, another podocytic protein that is also localized in endothelia of blood vessels. Podoplanin specifically immunolabeled endothelia of benign tumorous lesions of undisputed lymphatic origin (lymphangiomas, hygromas) and was detected there as a 38-kd protein by immunoblotting. As paradigms of malignant vascular tumors, poorly differentiated (G3) common angiosarcomas (n = 8), epitheloid angiosarcomas (n = 3), and intestinal Kaposi's sarcomas (n = 5) were examined for their podoplanin content in relation to conventional endothelial markers. The relative number of tumor cells expressing podoplanin was estimated and, although the number of cases in this preliminary study was limited to 16, an apparent spectrum of podoplanin expression emerged that can be divided into a low-expression group in which 0-10% of tumor cells contained podoplanin, a moderate-expression group with 30-60% and a high-expression group with 70-100%. Ten of eleven angiosarcomas and all Kaposi's sarcomas showed mixed expression of both lymphatic and blood vascular endothelial phenotypes. By double labeling, most podoplanin-positive tumor cells coexpressed endothelial markers of blood vessels, whereas few tumor cells were positive for individual markers only. From these results we conclude that (1) podoplanin is a selective marker of lymphatic endothelium; (2) G3 angiosarcomas display a quantitative spectrum of podoplanin-expressing tumor cells; (3) in most angiosarcomas, a varying subset of tumor cells coexpresses podoplanin and endothelial markers of blood vessels; and (4) all endothelial cells of Kaposi's sarcomas expressed the lymphatic marker podoplanin.  (+info)

Nasal-associated lymphoid tissue: phenotypic and functional evidence for the primary role of peripheral node addressin in naive lymphocyte adhesion to high endothelial venules in a mucosal site. (2/274)

Nasal-associated lymphoid tissue (NALT), a mucosal inductive site for the upper respiratory tract, is important for the development of mucosal immunity locally and distally to intranasally introduced Ag. To more fully understand the induction of nasal mucosal immunity, we investigated the addressins that allow for lymphocyte trafficking to this tissue. To investigate the addressins responsible for naive lymphocyte binding, immunofluorescent and immunoperoxidase staining of frozen NALT sections were performed using anti-mucosal addressin cell adhesion molecule-1 (MAdCAM-1), anti-peripheral node addressin (PNAd), and anti-VCAM-1 mAbs. All NALT high endothelial venules (HEV) expressed PNAd, either associated with MAdCAM-1 or alone, whereas NALT follicular dendritic cells expressed both MAdCAM-1 and VCAM-1. These expression profiles were distinct from those of the gut mucosal inductive site, Peyer's patches (PP). The functionality of NALT HEV was determined using a Stamper-Woodruff ex vivo assay. The anti-L-selectin MEL-14 mAb blocked >90% of naive lymphocyte binding to NALT HEV, whereas the anti-MAdCAM-1 mAb, which blocks almost all naive lymphocyte binding to PP, minimally blocked binding to NALT HEV. NALT lymphocytes exhibited a unique L-selectin expression profile, differing from both PP and peripheral lymph nodes. Finally, NALT HEV were found in increased amounts in the B cell zones, unlike PP HEV. These results suggest that NALT is distinct from the intestinal PP, that initial naive lymphocyte binding to NALT HEV involves predominantly L-selectin and PNAd rather than alpha4beta7-MAdCAM-1 interactions, and that MAdCAM-1 and VCAM-1 expressed by NALT follicular dendritic cells may play an important role in lymphocyte recruitment and retention.  (+info)

A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. (3/274)

L-selectin mediates lymphocyte homing by facilitating lymphocyte adhesion to unique carbohydrate ligands, sulfated sialyl Lewis(x), which are expressed on high endothelial venules (HEV) in secondary lymphoid organs. The nature of the sulfotransferase(s) that contribute to sulfation of such L-selectin counterreceptors has been uncertain. We herein describe a novel L-selectin ligand sulfotransferase, termed LSST, that directs the synthesis of the 6-sulfo sialyl Lewis(x) on L-selectin counterreceptors CD34, GlyCAM-1, and MAdCAM-1. LSST is predominantly expressed in HEV and exhibits striking catalytic preference for core 2-branched mucin-type O-glycans as found in natural L-selectin counterreceptors. LSST enhances L-selectin-mediated adhesion under shear compared to nonsulfated controls. LSST therefore corresponds to an HEV-specific sulfotransferase that contributes to the biosynthesis of L-selectin ligands required for lymphocyte homing.  (+info)

Evidence that the ATP-induced increase in vasomotion of guinea-pig mesenteric lymphatics involves an endothelium-dependent release of thromboxane A2. (4/274)

1. Experiments were made to investigate mechanisms by which adenosine 5'-trisphosphate (ATP) enhanced vasomotion in mesenteric lymphatic vessels isolated from young guinea-pigs. 2. ATP (10-8 - 10-3 M) caused a concentration-dependent increase of perfusion-induced vasomotion with the endothelium mediating a fundamental role at low ATP concentrations (10-8 - 10-6 M). 3. The response to 10-6 M ATP showed tachyphylaxis when applied at intervals of 10 min but not at intervals of 20 or 30 min. 4. Suramin (10-4 M) or reactive blue 2 (3x10-5 M) but not PPADS (3x10-5 M) abolished the excitatory response to 10-6 M ATP confirming an involvement of P2 purinoceptors. 5. The excitatory response to 10-6 M ATP was abolished by treatment with either pertussis toxin (100 ng ml-1), antiflammin-1 (10-9 M), indomethacin (3x10-6 M) or SQ29548 (3x10-7 M), inhibitors of specific G proteins, phospholipase A2, cyclo-oxygenase and thromboxane A2 receptors respectively. 6. ATP simultaneously induced a suramin-sensitive inhibitory response, which was normally masked by the excitatory response. ATP-induced inhibition was mediated by endothelium-derived nitric oxide (EDNO) as the response was abolished by NG-nitro-L-arginine (L-NOARG; 10-4 M), an inhibitor of nitric oxide synthase. 7. We conclude that ATP modulates lymphatic vasomotion by endothelium-dependent and endothelium-independent mechanisms. One of these is a dominant excitation caused through endothelial P2 purinoceptors which because of an involvement of a pertussis toxin sensitive G-protein may be of the P2Y receptor subtype. Their stimulation increases synthesis of phospholipase A2 and production of thromboxane A2, an arachidonic acid metabolite which acts as an endothelium-derived excitatory factor.  (+info)

Prox1 function is required for the development of the murine lymphatic system. (5/274)

The lack of specific markers has raised problems in documenting the precise manner by which the lymphatic system develops. Here we report that the homeobox gene Prox1 is expressed in a subpopulation of endothelial cells that by budding and sprouting give rise to the lymphatic system. The initial localization of these cells in the veins and their subsequent budding are both polarized, suggesting that unidentified guidance signals regulate this process. In Prox1 null mice, budding and sprouting is arrested, although vasculogenesis and angiogenesis of the vascular system is unaffected. These findings suggest that Prox1 is a specific and required regulator of the development of the lymphatic system and that the vascular and lymphatic systems develop independently.  (+info)

Expression profile of active genes in mouse lymph node high endothelial cells. (6/274)

High endothelial venules (HEV) allow rapid and selective lymphocyte trafficking from the blood into secondary lymphoid tissues. Here we report the expression profile of active genes in mouse high endothelial cells (HEC). HEC were first purified from mouse lymph nodes (LN) by magnetic cell sorting with MECA-79 mAb and a 3'-directed cDNA library that faithfully represents the composition of mRNA was constructed. A total of 1495 cDNA sequences were obtained from randomly selected clones. Based on their sequence identity, they were grouped into 754 different species [gene signatures (GS)] of which 335 GS were identified in GenBank. Among the previously identified genes, expression of several endothelial cell surface molecules including endoglin and ICAM-1 was detected in HEC. Comparison of the gene expression profile with that of purified CD31(+) flat endothelial cells identified several molecules, such as KC chemokine and Duffy antigen/receptor for chemokines, that are known to be selectively expressed in activated endothelial cells or post-capillary venules. Interestingly, mac25/TAF, which is known to be expressed specifically in tumor vessels and implicated in the regulation of cell adhesion, was highly and selectively expressed in HEC in mouse LN, suggesting that it may participate in regulating HEC-specific functions. Comparison with the expression profiles obtained from 35 different cell types showed at least 22 GS that were apparently specific to HEC. Our results illustrate the expression differences between HEC and CD31(+) flat endothelial cells, and will be useful for the identification and characterization of genes specific for HEC.  (+info)

Ultrastructural and three dimensional aspects of the lymphatic vessels of the absorbing peripheral lymphatic apparatus in Peyer's patches of the rabbit. (7/274)

We studied the absorbing lymphatic peripheral vessels of the Peyer's patches of the small and large intestine of the rabbit by means of light microscopy after injection of Neoprene latex and transmission electron microscopy in order to highlight their topographical distributions to blood vessels as well as the morphologic mechanism of transendothelial passage of the lymphocytes to the lymph. The distribution of absorbing lymphatic vessels originates from the lacteal vessels and the subepithelial mucosal lymphatic network, which continue without interruptions and dilations into the vessels of the interfollicular area which are woven into basket-like networks entwining the medio-basal portion of each lymphoid follicle. The interfollicular area vessels then drain into the large vessels of the tunica submucosa, which in turn drain into the valved precollector vessels of the subserosa by way of intramuscular vessels. TEM revealed the absorbing lymphatic vessels to have a continuous endothelial wall without open junctions, fenestrations, and continuous basal lamina. We observed many lymphocytes wedged in the lymphatic endothelial wall. This underlines the different phases of their migration from the lymphoid tissue in the lumen of the lymphatic vessel. Results of ultrathin serial sections and three dimensional reconstruction of lymphatic vessel segments with included lymphocyte showed the transendothelial passage of lymphocyte, through the "intraendothelial channels."  (+info)

The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. (8/274)

T cell homing to peripheral lymph nodes (PLNs) is defined by a multistep sequence of interactions between lymphocytes and endothelial cells in high endothelial venules (HEVs). After initial tethering and rolling via L-selectin, firm adhesion of T cells requires rapid upregulation of lymphocyte function-associated antigen 1 (LFA-1) adhesiveness by a previously unknown pathway that activates a Galpha(i)-linked receptor. Here, we used intravital microscopy of murine PLNs to study the role of thymus-derived chemotactic agent (TCA)-4 (secondary lymphoid tissue chemokine, 6Ckine, Exodus-2) in homing of adoptively transferred T cells from T-GFP mice, a transgenic strain that expresses green fluorescent protein (GFP) selectively in naive T lymphocytes (T(GFP) cells). TCA-4 was constitutively presented on the luminal surface of HEVs, where it was required for LFA-1 activation on rolling T(GFP) cells. Desensitization of the TCA-4 receptor, CC chemokine receptor 7 (CCR7), blocked T(GFP) cell adherence in wild-type HEVs, whereas desensitization to stromal cell-derived factor (SDF)-1alpha (the ligand for CXC chemokine receptor 4 [CXCR4]) did not affect T(GFP) cell behavior. TCA-4 protein was not detected on the luminal surface of PLN HEVs in plt/plt mice, which have a congenital defect in T cell homing to PLNs. Accordingly, T(GFP) cells rolled but did not arrest in plt/plt HEVs. When TCA-4 was injected intracutaneously into plt/plt mice, the chemokine entered afferent lymph vessels and accumulated in draining PLNs. 2 h after intracutaneous injection, luminal presentation of TCA-4 was detectable in a subset of HEVs, and LFA-1-mediated T(GFP) cell adhesion was restored in these vessels. We conclude that TCA-4 is both required and sufficient for LFA-1 activation on rolling T cells in PLN HEVs. This study also highlights a hitherto undocumented role for chemokines contained in afferent lymph, which may modulate leukocyte recruitment in draining PLNs.  (+info)