Multitude of ion channels in the regulation of transmitter release. (57/12813)

The presynaptic nerve terminal is of key importance in communication in the nervous system. Its primary role is to release transmitter quanta on the arrival of an appropriate stimulus. The structural basis of these transmitter quanta are the synaptic vesicles that fuse with the surface membrane of the nerve terminal, to release their content of neurotransmitter molecules and other vesicular components. We subdivide the control of quantal release into two major classes: the processes that take place before the fusion of the synaptic vesicle with the surface membrane (the pre-fusion control) and the processes that occur after the fusion of the vesicle (the post-fusion control). The pre-fusion control is the main determinant of transmitter release. It is achieved by a wide variety of cellular components, among them the ion channels. There are reports of several hundred different ion channel molecules at the surface membrane of the nerve terminal, that for convenience can be grouped into eight major categories. They are the voltage-dependent calcium channels, the potassium channels, the calcium-gated potassium channels, the sodium channels, the chloride channels, the non-selective channels, the ligand gated channels and the stretch-activated channels. There are several categories of intracellular channels in the mitochondria, endoplasmic reticulum and the synaptic vesicles. We speculate that the vesicle channels may be of an importance in the post-fusion control of transmitter release.  (+info)

Calreticulin expression is associated with androgen regulation of the sensitivity to calcium ionophore-induced apoptosis in LNCaP prostate cancer cells. (58/12813)

Calreticulin has been identified previously as one of the androgen-response genes in the prostate. The role of calreticulin in androgen action was studied using androgen-sensitive LNCaP and androgen-insensitive PC-3 human prostate cancer cell lines. Calreticulin appears to be a primary androgen-response gene in cultured LNCaP cells because androgen induction of calreticulin mRNA resists protein synthesis inhibition. Calreticulin is a high capacity intracellular Ca2+ binding protein, suggesting that calreticulin expression is likely to be associated with the intracellular Ca2+ buffering capacity that could regulate the sensitivity to cytotoxic intracellular Ca2+ overload. As expected, androgen protects androgen-sensitive LNCaP but not androgen-insensitive PC-3 cells from cytotoxic intracellular Ca2+ overload induced by Ca2+ ionophore A23187. To provide evidence for the role of calreticulin in reducing cytotoxic effect of Ca2+ influx in prostatic cells, we have shown that calreticulin antisense oligonucleotide down-regulates calreticulin protein level and significantly increases the sensitivity to A23187-induced apoptosis in both LNCaP and PC-3 cells. Furthermore, calreticulin antisense oligonucleotide reverses the androgen-induced resistance to A23187 in LNCaP cells. The above observations collectively suggest that calreticulin mediates androgen regulation of the sensitivity to Ca2+ ionophore-induced apoptosis in LNCaP cells.  (+info)

p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. (59/12813)

COPI-coated vesicles that bud off the Golgi complex contain two major transmembrane proteins, p23 and p24. We have localized the protein at the Golgi complex and at COPI-coated vesicles. Transport from the intermediate compartment (IC) to the Golgi can be blocked at 15 degrees C, and under these conditions p24 accumulates in peripheral punctated structures identified as IC. Release from the temperature block leads to a redistribution of p24 to the Golgi, showing that p24, similar to p23, cycles between the IC and Golgi complex. Immunoprecipitations of p24 from cell lysates and from detergent-solubilized Golgi membranes and COPI-coated vesicles show that p24 and p23 interact with each other to form a complex. Transient transfection of p23 in HeLa cells shows that p23 and p24 colocalize in structures induced by the overexpression of p23. Taken together p24 interacts with p23 and constitutively cycles between the organelles of the early secretory pathway.  (+info)

Hypothetical protein KIAA0079 is a mammalian homologue of yeast Sec24p. (60/12813)

The Sec23p-Sec24p complex is a component of COPII-coated vesicles that mediate protein transport from the endoplasmic reticulum in yeast. The mammalian hypothetical protein KIAA0079 (KIAA0079p) exhibits sequence similarity to yeast Sec24p. KIAA0079p was co-eluted with mammalian Sec23p on gel filtration. In vitro binding experiments revealed that the C-terminal region of KIAA0079p binds to the N-terminal region of mammalian Sec23p. Overexpression of KIAA0079p caused a defect in protein export from the endoplasmic reticulum. These results support the idea that KIAA0079p is a functional homologue of yeast Sec24p.  (+info)

Identification of protein components of the microsomal glucose 6-phosphate transporter by photoaffinity labelling. (61/12813)

The glucose-6-phosphatase system catalyses the terminal step of hepatic glucose production from both gluconeogenesis and glycogenolysis and is thus a key regulatory factor of blood glucose homoeostasis. To identify the glucose 6-phosphate transporter T1, we have performed photoaffinity labelling of human and rat liver microsomes by using the specific photoreactive glucose-6-phosphate translocase inhibitors S 0957 and S 1743. Membrane proteins of molecular mass 70, 55, 33 and 31 kDa were labelled in human microsomes by [3H]S 0957, whereas in rat liver microsomes bands at 95, 70, 57, 54, 50, 41, 33 and 31 kDa were detectable. The photoprobe [3H]S 1743 led to the predominant labelling of a 57 kDa and a 50 kDa protein in the rat. Stripping of microsomes with 0.3% CHAPS retains the specific binding of T1 inhibitors; photoaffinity labelling of such CHAPS-treated microsomes resulted in the labelling of membrane proteins of molecular mass 55, 33 and 31 kDa in human liver and 50, 33 and 31 kDa in rat liver. Photoaffinity labelling of human liver tissue samples from a healthy individual and from liver samples of patients with a diagnosed glycogen-storage disease type 1b (GSD type 1b; von Gierke's disease) revealed the absence of the 55 kDa protein from one of the patients with GSD type 1. These findings support the identity of the glucose 6-phosphate transporter T1, with endoplasmic reticulum protein of molecular mass 50 kDa in rat liver and 55 kDa in human liver.  (+info)

Biogenesis of alpha6beta4 integrin in a human colonic adenocarcinoma cell line involvement of calnexin. (62/12813)

The heterodimer alpha6beta4 is a major integrin and the main laminin receptor in epithelia. The alpha6 integrin subunit is proteolytically cleaved, probably by furin, and glycosylated during its biosynthesis. In the present work, we have investigated the kinetics of the assembly process of alpha6beta4 heterodimers in the colonic adenocarcinoma cell line HT29-D4. We demonstrate that the association of alpha6 and beta4 precursors occurs within the ER, while the endoproteolytic cleavage of pro-alpha6 occurs later, probably in the trans-Golgi network. When pro-alpha6 was blocked within the ER by treatment with brefeldin A, its maturation processing was completely prevented without any consequence on its association with beta4 subunit. Low temperature (20 degrees C) also blocked pro-alpha6 maturation, like brefeldin A, but in addition impaired the integrin assembly. Calnexin, an ER resident protein chaperone, was found to be associated with both the alpha6 and beta4 subunit precursors. Our data suggest that calnexin might be responsible for the prolonged retention of pro-alpha6 within the ER compartment and for the defect of integrin subunit association observed at low temperature.  (+info)

Quality control: from molecules to organelles. (63/12813)

There is a vast body of literature on the quality control of protein folding and assembly into multisubunit complexes. Such control takes place everywhere in the cell. The correcting mechanisms involve cytosolic and organellar proteases; the result of such control is individual molecules with proper structure and individual complexes both with proper stoichiometry and proper structure. Obviously, the formation of organelles as such requires some additional criteria of correctness and some new mechanisms of their implementation. It is proposed in this article that the ability to carry out an integral (key) function may serve as a criterion of correct organelle assembly and that autophagy can be accepted as a mechanism eliminating the assembly mistakes.  (+info)

Amino acid limitation regulates CHOP expression through a specific pathway independent of the unfolded protein response. (64/12813)

The gene encoding CHOP (C/EBP-homologous protein) is transcriptionally activated by many stimuli and by amino acid deprivation. CHOP induction was considered to be due to an accumulation of unfolded protein into the ER (unfolded protein response (UPR)). We investigate the role of the UPR in the induction of CHOP by amino acid deprivation and show that this induction is not correlated with BiP expression (an UPR marker). Moreover, amino acid deprivation and UPR inducers regulate the CHOP promoter activity using distinct cis elements. We conclude that amino acid deprivation does not activate the UPR and regulates CHOP expression through a pathway that is independent of the UPR.  (+info)