The ubiquitin-proteasome system and endocytosis. (49/7451)

Internalization of membrane proteins has been studied for more than three decades without solving all the underlying mechanisms. Our knowledge of clathrin-mediated endocytosis is certainly sufficient to understand the basic principles. However, more detailed insight is required to recognize why different proteins enter clathrin-coated pits with different rates and affinities. In addition to clathrin coat components, at least two adaptor systems and even more accessory proteins have been described to preselect membrane proteins before they can enter cells. Recent experimental data have identified the ubiquitin-proteasome system as a regulatory system for endocytosis. This system is well-known for its basic regulatory function in protein degradation, and controls a magnitude of key events. The ubiquitin-proteasome system is now identified as a regulator of the endocytosis of selected membrane proteins. In this review, we will discuss the complexity and implications of this mechanism for receptor-mediated endocytosis.  (+info)

Resistance of small leucine-rich repeat proteoglycans to proteolytic degradation during interleukin-1-stimulated cartilage catabolism. (50/7451)

A bovine nasal-cartilage culture system has been utilized to analyse the catabolic events occurring in response to interleukin-1beta over a 14-day period. An early event following the start of interleukin-1 treatment was the release of glycosaminoglycan into the culture medium. This release was accompanied by the appearance in the tissue, and shortly thereafter also in the culture media, of a globular domain (G1)-containing aggrecan degradation product generated by the action of aggrecanase. Link protein was also released from the cartilage with a similar timeframe to that of the G1 fragment, although there was no evidence of its proteolytic degradation. By comparison with aggrecan, the small leucine-rich repeat proteoglycans decorin, biglycan and lumican showed a resistance to both proteolytic cleavage and release throughout the culture period. In contrast, fibromodulin exhibited a marked decrease in size after day 4, presumably due to proteolytic modification, but the major degradation product was retained throughout the culture period. Also in contrast with the early changes in the components of the proteoglycan aggregate, type II collagen did not display signs of extensive degradation until much later in the culture period. Collagen degradation products compatible with collagenase action first appeared in the medium by day 10 and increased thereafter. These data demonstrate that the leucine-rich repeat proteoglycans are resistant to proteolytic action during interleukin-1-stimulated cartilage catabolism, compared with aggrecan. This resistance and continued interaction with the surface of the collagen fibrils may help to stabilize the collagen fibrillar network and protect it from extensive proteolytic attack during the early phases of cartilage degeneration.  (+info)

Alteration of alpha-spectrin ubiquitination due to age-dependent changes in the erythrocyte membrane. (51/7451)

Mammalian red blood cell alpha-spectrin is ubiquitinated in vitro and in vivo [Corsi, D., Galluzzi, L., Crinelli, R., Magnani, M. (1995) J. Biol. Chem. 270, 8928-8935]. This process shows a cell age-dependent decrease, with senescent red blood cells having approximately one third of the amount of ubiquitinated alpha-spectrin found in young cells. In-vitro ubiquitination of alpha-spectrin was dependent on the source of the red cell membranes (those from older cells are less susceptible to ubiquitination than those from younger cells), on the source of ubiquitin-conjugating enzymes (those from older cells catalyze the process at a reduced rate compared to those from younger cells) and on the ubiquitin isopeptidase activity (which decreases during red cell ageing). However, once alpha-spectrin has been extracted from the membranes of young or old red blood cells, it is susceptible to ubiquitination to a similar extent regardless of source. This suggests that it is the membrane architecture, and not spectrin itself, that is responsible for the age-dependent decline in ubiquitination. Furthermore, spectrin oligomers, tetramers and dimers are also equally susceptible to ubiquitination. As spectrin ubiquitination occurs on domains alphaIII and alphaV of alpha-spectrin, and domain alphaV contains the nucleation site for the association of the alpha- and beta-spectrin chains, alterations in ubiquitination during red cell ageing could affect the stability and deformability of the erythrocyte membrane.  (+info)

Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. (52/7451)

Tip1p is one of the major cell wall mannoproteins of Saccharomyces cerevisiae and is presumed to be synthesized as a glycosylphosphatidylinositol (GPI)-anchored form. We purified Tip1p from a glucanase extract of yeast cell walls and analyzed the sugar chain involved in the cell wall linkage. One mol of glucanase-extracted Tip1p contained 7.5 mol of glucose derived from glucan and 1 mol of ethanolamine, a component of the GPI anchor. One mol of the C-terminal peptide of Tip1p digested with Achromobacter protease I also contained 7.9 mol of glucose and 1 mol of ethanolamine. On the other hand, Tip1p contained no glucosamine, which is a component of the GPI anchor. The glucan-binding sugar chain of Tip1p was released by hydrazinolysis and isolated. This sugar chain contained ethanolamine with a free amino group and a glucose reducing end, but no mannose reducing end. Phosphodiesterase treatment eliminated the free amino group from this sugar chain, suggesting that a phosphodiester bond exists between the ethanolamine and the glucan remnant. These results indicate (1) the glucan-binding sugar chain of Tip1p is a GPI derivative, and (2) the GPI anchor is cleaved at the glycosyl moiety, and the resultant mannose reducing end is probably used to link Tip1p to cell wall glucan.  (+info)

Imaging fluorescence resonance energy transfer between two green fluorescent proteins in living yeast. (53/7451)

We show that fluorescence resonance energy transfer between two mutants of the green fluorescent protein (GFP) can be monitored by imaging microscopy in living yeast. This work is based on the constitutive expression of a GFP-containing fusion protein and the inducible expression of the tobacco etch virus (TEV) protease. In the fusion protein, the P4.3 GFP mutant is linked to the YS65T GFP mutant by a spacer bearing the TEV protease-specific cleavage site.  (+info)

Proteolytic degradation of hemoglobin by endogenous lysosomal proteases gives rise to bioactive peptides: hemorphins. (54/7451)

Hemorphin generation by mice peritoneal macrophages has been recently reported, nevertheless no conclusive data exist to localize clearly the macrophage proteolytic activity implicated in their generation. Because lysosomes are believed to be the main site of degradation in the endocytic pathway, we have studied their potential implication in the generation of hemorphins from hemoglobin. When this protein is submitted to purified rat liver lysosomes, an early generation of hemorphin-7-related peptides, detected by a radioimmunoassay, was observed. These peptides seemed to be relatively stable during the first hours of hydrolysis.  (+info)

Characterization of a chromosomally encoded glycylglycine endopeptidase of Staphylococcus aureus. (55/7451)

The authors previously reported the cloning of a lytic-enzyme-encoding gene, lytM, from an autolysis-defective mutant of Staphylococcus aureus. In the present work, the lytM gene was overexpressed in Escherichia coli and the product was purified to homogeneity by affinity chromatography and HPLC. Biochemical analysis of LytM-cleaved peptidoglycan fragments indicated that LytM is a glycylglycine endopeptidase. Immunoelectron microscopic studies with anti-LytM rabbit IgG showed that LytM is expressed during the early exponential phase and is overexpressed in an autolysis-defective mutant compared with the parent strain. Also, a uniform distribution of gold particles on the surface of actively growing bacterial cells indicates that LytM plays a role in cell growth. Northern blot analyses of lytM expression in two global regulatory mutants, agr and sar, showed that expression of lytM is increased about twofold in these mutants as compared with the parents. Protein homology searches revealed that LytM could be a member of the zinc protease family, as it contained a homologous 38-amino-acid motif, Tyr-X-His-X11-Val-X12/20-Gly-X5-6-His. Atomic absorption spectrometric analysis of LytM revealed the presence of 0.9 mol zinc (mol LytM)(-1).  (+info)

Nuclear rDNA phylogeny in the fungal genus Verticillium and its relationship to insect and plant virulence, extracellular proteases and carbohydrases. (56/7451)

Phylogenetic relationships among 18 isolates in the genus Verticillium, representing 13 species of diverse econutritional groups (pathogens of insects, plants, mushrooms, nematodes and spiders, and saprobes), were examined by using sequences from the internal transcribed spacer (ITS) and small nuclear (NS) rRNA regions. The isolates were also assessed for their abilities to infect insect larvae (Galleria mellonella) and to cause necrosis in alfalfa (Medicago sativa), and for their proteolytic, chitinolytic and pectinolytic activities. The phylogenetic data suggested that Verticillium is polyphyletic in origin and is therefore a form genus. However, the phylogenetic tree supported the plant pathogens (V. dahliae, V. albo-atrum and V. nigrescens) as a clade. The alfalfa isolate of V. albo-atrum (isolate 595) was an interesting outlier to the main body of plant pathogens as it clustered with the insect pathogen V. indicum. Strains of V. lecanii and V. indicum were able to infect insects and are present in divergent groups in the consensus tree, suggesting that the ability to infect insects may have evolved independently many times. Similarly, the nematophagous Verticillium species appear to have evolved independently along several different routes and one isolate, V. chlamydosporium, was able to infect insects. V. albo-atrum, V. nigrescens and V. dahliae all produced high levels of enzymes capable of degrading pectin, a major component of plant cell walls. The ability to excrete pectinase was a broad indicator of the ability to produce lesions on alfalfa. In the plant pathogens, the functions of a broad-spectrum protease were assumed by trypsins which degrade Bz-AA-AA-Arg-NA substrates (Bz, benzoyl; AA, various amino acids; NA, p-nitroanilide). The insect pathogens and mushroom pathogen (V. fungicola) were characterized by production of high levels of subtilisin-like proteases active against a chymotrypsin substrate (succinyl-Ala2-Pro-Phe-NA) and the inability to clear pectin. The insect and mushroom pathogens, and several nematode pathogens, were distinguishable from the plant pathogens in their ability to produce chitinases.  (+info)