Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. (9/2984)

The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry 37:6033-6040, 1998). The biological relevance of the N-glycosylase-associated AP lyase activity in the repair of abasic sites is not well understood, and the majority of AP sites in vivo are thought to be processed by Apn1p, the major AP endonuclease in yeast. We have found that yeast cells simultaneously lacking Ntg1p, Ntg2p, and Apn1p are hyperrecombinogenic (hyper-rec) and exhibit a mutator phenotype but are not sensitive to the oxidizing agents H2O2 and menadione. The additional disruption of the RAD52 gene in the ntg1 ntg2 apn1 triple mutant confers a high degree of sensitivity to these agents. The hyper-rec and mutator phenotypes of the ntg1 ntg2 apn1 triple mutant are further enhanced by the elimination of the nucleotide excision repair pathway. In addition, removal of either the lesion bypass (Rev3p-dependent) or recombination (Rad52p-dependent) pathway specifically enhances the hyper-rec or mutator phenotype, respectively. These data suggest that multiple pathways with overlapping specificities are involved in the removal of, or tolerance to, spontaneous DNA damage in S. cerevisiae. In addition, the fact that these responses to induced and spontaneous damage depend upon the simultaneous loss of Ntg1p, Ntg2p, and Apn1p suggests a physiological role for the AP lyase activity of Ntg1p and Ntg2p in vivo.  (+info)

Endoribonuclease IV. A poly(A)-specific ribonuclease from chick oviduct. 1. Purification of the enzyme. (10/2984)

A new endoribonuclease, termed endoribonuclease IV, has been described. This enzyme has been isolated from chick oviducts and purified 15 000-fold in a 25% yield nearly to homogeneity. The nuclease, which specifically degrades poly(A), forms oligonucleotides of an average chain length of 10. These (A)-10 fragments are terminated by 3'-hydroxyl and 5'-phosphate groups. The enzyme has a pH optimum at 8.7, requires Mn2+ or Mg2+ as a cofactor, and has a molecular weight of about 45 000.  (+info)

Endoribonuclease IV. 2. Further investigation on the specificity. (11/2984)

The poly(A)-specific endoribonuclease IV produces oligo(A) fragments of a chain length of 10 AMP nucleotides. One enzyme molecule performs 1700 cleavages per min; the cleavages occur randomly. The endoribonuclease IV is a nuclear enzyme which is present in the oviduct of quails in a concentration of 40 000 enzyme molecules per cell. Poly(A) segments on mRNA are selectively hydrolyzed by endoribonuclease IV; the poly(A)-free part of the RNA is not affected. After incubation with the enzyme, a residual oligo(A) stretch of 5 AMP nucleotides remains on poly(A)-rich RNA. The endoribonuclease IV does not disintegrate the polyribosomal complex after incubation in vitro and the enzyme has also no influence on the translational capacity of a cell-free protein-synthesizing system.  (+info)

A novel endonuclease of human cells specific for single-stranded DNA. (12/2984)

We have fractionated from human aneuploid cell cultures three different enzyme fractions degrading single-stranded DNA. We have purified and characterized one of these DNases; this is an endonuclease working at alkaline pH (around 9.5) and requiring Mg2+ for its activity. The enzyme degrades denatured DNA over 100 times more efficiently than native DNA in optimal conditions. The termini produced by the enzyme have 5'P and 3'OH ends. The enzyme can attack, though at reduced rate, the supertwisted circular molecule of Simian virus 40 DNA, whereas it is inactive on the nicked circular molecule. The ultraviolet irradiation of DNA, whether native or denatured, does not affect its efficiency as substrate of the DNase. The properties of this endonuclease distinguish it from those of the other DNases described previously in mammalian cells; the denomination DNase VI is therefore proposed. Its properties are similar to those of DNases described in Ustilago maydis and Bacillus subtilis, for which an essential role in recombination seems likely.  (+info)

An endonuclease from mouse cells specific for single-stranded DNA. (13/2984)

An endonuclease with a molecular weight of about 70000 (5-6S) was extensively purified from mouse ascites cells. The enzyme specifically attacks single-stranded DNA which is degraded mainly to oligonucleotides, with 5-10 residues. Supercoiled covalently closed circular phage DNA is converted to the linear relaxed form. The enzyme activity is highly sensitive to salt and can be stimulated by reagents lowering the dielectric constant of the buffer such as dimethylsulfoxide and glycerol.  (+info)

Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. (14/2984)

Repair of a double-strand break (DSB) by homologous recombination depends on the invasion of a 3'-ended strand into an intact template sequence to initiate new DNA synthesis. When the end of the invading DNA is not homologous to the donor, the nonhomologous sequences must be removed before new synthesis can begin. In Saccharomyces cerevisiae, the removal of these ends depends on both the nucleotide excision repair endonuclease Rad1p/Rad10p and the mismatch repair proteins Msh2p/Msh3p. In rad1 or msh2 mutants, when both ends of the DSB have nonhomologous ends, repair is reduced approximately 90-fold compared to a plasmid with perfect ends; however, with only one nonhomologous end, repair is reduced on average only 5-fold. These results suggest that yeast has an alternative, but less efficient, way to remove a nonhomologous tail from the second end participating in gene conversion. When the removal of one nonhomologous end is impaired in rad1 and msh2 mutants, there is also a 1-hr delay in the appearance of crossover products of gene conversion, compared to noncrossovers. We interpret these results in terms of the formation and resolution of alternative intermediates of a synthesis-dependent strand annealing mechanism.  (+info)

Purification and properties of a Bacillus subtilis endonuclease specific for apurinic sites in DNA. (15/2984)

An endonuclease which hydrolyzes depurinated DNA has been purified from extracts of Bacillus subtilis cells. The endonuclease is a monomeric protein and has a molecular weight of around 56,000. The enzyme is specific for apurinic sites in double-stranded DNA, has a pH optimum at 8.0, and is slightly stimulated with 50 mM NaCl but completely inhibited with 500 mM NaCl. It requires no divalent cations and is insensitive to EDTA; it has no associated exonuclease. These properties are very similar to those of Escherichia coli endonuclease IV, which is also insensitive to EDTA and has no exonuclease activity, and very different from those of the main endonuclease for apurinic sites (endonuclease IV) of the same bacterium.  (+info)

The site-specific deoxyribonuclease from Bacillus pumilus (endonuclease R.Bpu1387). (16/2984)

A new site-specific endonuclease (DNase) was isolated from the cells of Bacillus pumilus AHU 1387 strain. This enzyme (endonuclease R.Bpu 1387) introduced double-stranded scissions at unique sites on DNA's of coli phage lambda, lambdadvl, coli phage T7, Bacillus phage phi105C, Bacillus phage SP10, and Simian Virus 40, in the presence of magnesium ion. The activity was stimulated by the presence of NaCl.  (+info)