Charge-to-alanine mutagenesis of the adeno-associated virus type 2 Rep78/68 proteins yields temperature-sensitive and magnesium-dependent variants. (41/2984)

The adeno-associated virus type 2 (AAV) replication (Rep) proteins Rep78 and 68 (Rep78/68) exhibit a number of biochemical activities required for AAV replication, including specific binding to a 22-bp region of the terminal repeat, site-specific endonuclease activity, and helicase activity. Individual and clusters of charged amino acids were converted to alanines in an effort to generate a collection of conditionally defective Rep78/68 proteins. Rep78 variants were expressed in human 293 cells and analyzed for their ability to mediate replication of recombinant AAV vectors at various temperatures. The biochemical activities of Rep variants were further characterized in vitro by using Rep68 His-tagged proteins purified from bacteria. The results of these analyses identified a temperature-sensitive (ts) Rep protein (D40,42,44A-78) that exhibited a delayed replication phenotype at 32 degrees C, which exceeded wild-type activity by 48 h. Replication activity was reduced by more than threefold at 37 degrees C and was undetectable at 39 degrees C. Stability of the Rep78 protein paralleled replication levels at each temperature, further supporting a ts phenotype. Replication differences resulted in a 3-log-unit difference in virus yields between the permissive and nonpermissive temperatures (2.2 x 10(6) and 3 x 10(3), respectively), demonstrating that this is a relatively tight mutant. In addition to the ts Rep mutant, we identified a nonconditional mutant with a reduced ability to support viral replication in vivo. Additional characterization of this mutant demonstrated an Mg(2+)-dependent phenotype that was specific to Rep endonuclease activity and did not affect helicase activity. The two mutants described here are unique, in that Rep ts mutants have not previously been described and the D412A Rep mutant represents the first mutant in which the helicase and endonuclease functions can be distinguished biochemically. Further understanding of these mutants should facilitate our understanding of AAV replication and integration, as well as provide novel strategies for production of viral vectors.  (+info)

Oogenic function of the myogenic factor D-MEF2: negative regulation of the decapentaplegic receptor gene thick veins. (42/2984)

The myogenic factor D-MEF2 is required for the proper differentiation of muscle cells during Drosophila embryogenesis and the correct patterning of indirect flight muscles assembled during later metamorphosis. In addition to these essential myogenic functions, mutant D-mef2 adult females are weakly fertile and produce defective eggs. D-MEF2 is expressed in nurse and follicle cells of the wild-type egg chamber. We have analyzed the D-mef2 oogenic phenotype and show that the gene is required for the normal patterning and differentiation of the centripetally migrating follicle cells that are crucial for development of the anterior chorionic structures. D-mef2 alleles exhibit a genetic interaction with a dominant-negative allele of thick veins (tkv), which encodes a type I receptor of the Decapentaplegic-signaling pathway. tkv RNA is overexpressed in D-mef2 mutant egg chambers, and, conversely, forced expression of D-mef2 represses tkv expression. These results indicate a role for D-MEF2 in the regulation of tkv gene expression and Decapentaplegic signal transduction that are essential for proper determination and/or differentiation of the anterior follicle cells. Additionally, they demonstrate a vital function for the D-MEF2 transcription factor in multiple genetic pathways during Drosophila development.  (+info)

Physico-chemical and biological study of excision-repair of UV--irradiated phiX174 RF DNA in vitro. (43/2984)

We have studied excision-repair of UV-irradiated phiX174 RFI DNA in vitro with UV-specific endonuclease from Micrococcus luteus (UV-endo), DNA polymerase I from Escherichia coli and DNA ligase from phage T4 infected E. coli. Excision-repair was measured a) by physico-chemical methods, i.e. by determination of the conversion of RF I DNA into RF II DNA by UV-endo and by the subsequent conversion of RF II DNA ligase, b) by biological methods i. e. by measuring the ability of the reaction product to form phages upon incubation with spheroplasts from the appropriate strains of E. coli. Using the first method, we have shown, that more than 90% of the pyrimidine dimers can be repaired in vitro; with the latter method we have shown, that the molecules which are repaired as defined by method a) have regained full biological activity. Exonuclease III was found to be not essential for excision-repair in vitro and also did not stimulate repair. From this result we conclude that UV-endo generates 3'OH endgroups, in agreement with results obtained by Hamilton et al. (1974). The usefulness of the method presented in this paper with regard to the study of excision-repair is discussed.  (+info)

A mechanism to activate branch migration between homologous DNA molecules in genetic recombination. (44/2984)

A mechanism to activate branch migration between homologous DNA molecules is described that leads to synapsis in genetic recombination. The model involves a restriction-like endonucleolytic enzyme that first nicks DNA (to produce single-strand breaks) on strands of opposite polarity at symmetrically arranged nucleotide sequences (located at ends of genes or operons). This is followed by local denaturation of the region, promoted by a single-strand-specific DNA binding protein (i.e., an unwinding protein). Hydrogen-bounding between homologous DNA molecules can then be initiated and this allows for subsequent propagation of hybrid DNA in the pathway to formation of the synapton structure.  (+info)

Different real-time PCR formats compared for the quantitative detection of human cytomegalovirus DNA. (45/2984)

BACKGROUND: The aim of this study was to compare the ABI PRISM 7700 Sequence Detection System and the LightCycler to develop a quantitative real-time PCR assay for the detection of human cytomegalovirus (HCMV) DNA suitable for routine hospital application. METHODS: We used one exonuclease probe and five different hybridization probe sets as sequence-specific fluorescence detection formats. For the exonuclease assay and two hybridization probe sets, reproducibility and the detection limit were determined. To keep the total assay time to a minimum, we gradually shortened individual reaction steps on both instruments. RESULTS: The exonuclease assay can be interchangeably performed on the 7700 and the LightCycler. No change of reaction conditions is required, except for the addition of bovine serum albumin to the LightCycler reaction. The shortest possible total assay time is 80 min for the ABI PRISM 7700 Sequence Detection System and 20 min for the LightCycler. When the LightCycler is used, the exonuclease probe can be replaced by a set of hybridization probes. All assays presented here detected HCMV DNA in a linear range from 10(1) to 10(7) HCMV genome equivalents/assay (r >0.995) with low intraassay (<5%) and interassay (<10%) variation. CONCLUSIONS: The ABI PRISM 7700 Sequence Detection System as well as the LightCycler are useful instruments for rapid and precise online PCR detection. Moreover, the two principles of fluorescence signal production allow HCMV quantification with the same accuracy.  (+info)

The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. (46/2984)

BACKGROUND: Mig1 is a transcriptional repressor responsible for glucose repression of many genes in the budding yeast Saccharomyces cerevisiae. Glucose regulates Mig1 function by affecting its phosphorylation, which is catalyzed by the Snf1 protein kinase. Phosphorylation alters the subcellular localization of Mig1, causing it to be nuclear when glucose is present, and cytoplasmic when glucose is absent. RESULTS: Here, we report that Msn5, a member of the importin beta family of nuclear transport receptors, is required to export Mig1 from the nucleus when glucose is removed. Mig1 and Msn5 interacted in a yeast two-hybrid assay. Within the portion of Mig1 that regulates its nuclear transport, we found a region that directed its nuclear export. Within this region, two leucine-rich sequences similar to known nuclear export signals were not required for Mig1 export. The corresponding domain of the yeast Kluyveromyces lactis Mig1 conferred glucose-regulated Msn5-dependent protein export from the nucleus in S. cerevisiae. Sequence comparison with S. cerevisiae Mig1 revealed short patches of homology in K. lactis and K. marxianus Mig1 that might be Msn5-interaction domains. These regions overlapped with the serine residues predicted to be Snf1 phosphorylation sites, suggesting that Msn5 and Snf1 recognize similar sequences in Mig1. Altering these serines abolished glucose-dependent phosphorylation of Mig1 and caused it to be a constitutive repressor that was retained in the nucleus. CONCLUSIONS: Mig1 contains a new nuclear export signal that is phosphorylated by Snf1 upon glucose removal, causing it to be recognized by the nuclear exportin Msn5 and carried out of the nucleus into the cytoplasm where it contributes to derepression of glucose-repressed genes.  (+info)

Recurrent invasion and extinction of a selfish gene. (47/2984)

Homing endonuclease genes show super-Mendelian inheritance, which allows them to spread in populations even when they are of no benefit to the host organism. To test the idea that regular horizontal transmission is necessary for the long-term persistence of these genes, we surveyed 20 species of yeasts for the omega-homing endonuclease gene and associated group I intron. The status of omega could be categorized into three states (functional, nonfunctional, or absent), and status was not clustered on the host phylogeny. Moreover, the phylogeny of omega differed significantly from that of the host, strong evidence of horizontal transmission. Further analyses indicate that horizontal transmission is more common than transposition, and that it occurs preferentially between closely related species. Parsimony analysis and coalescent theory suggest that there have been 15 horizontal transmission events in the ancestry of our yeast species, through simulations indicate that this value is probably an underestimate. Overall, the data support a cyclical model of invasion, degeneration, and loss, followed by reinvasion, and each of these transitions is estimated to occur about once every 2 million years. The data are thus consistent with the idea that frequent horizontal transmission is necessary for the long-term persistence of homing endonuclease genes, and further, that this requirement limits these genes to organisms with easily accessible germ lines. The data also show that mitochondrial DNA sequences are transferred intact between yeast species; if other genes do not show such high levels of horizontal transmission, it would be due to lack of selection, rather than lack of opportunity.  (+info)

Site-specific cleavage of single-stranded DNA by a Hemophilus restriction endonuclease. (48/2984)

Single-stranded viral DNA of bacteriophage f1 is cleaved into specific fragments by endo R-HaeIII, a restriction endonuclease isolated from Hemophilus aegyptius. The sites of the single strand cleavage correspond to those of the double strand cleavage. A single-stranded DNA fragment containing only one HaeIII site is also cleaved by this enzyme. This observation suggests that the reaction of single-stranded DNA cleavage does not require the formation of a symmetrical double-stranded structure that would result from the intramolecular base-pairing between two different HaeIII sites. Other restriction endonucleases may also cleave single-stranded DNA.  (+info)