A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. (49/1642)

Recent studies in mouse suggest that the extraembryonic endoderm has an important role in early embryonic patterning [1]. To analyze whether similar mechanisms operate in other vertebrates, we cloned the zebrafish homologue of Hex, a homeobox gene that is expressed asymmetrically in the mouse visceral endoderm [2]. Early expression of zebrafish hex is restricted to the dorsal portion of the yolk syncytial layer (YSL), an extraembryonic tissue. By the onset of gastrulation, hex is expressed in the entire dorsal half of the YSL, which directly underlies the cells fated to form the neural plate. We show that hex expression is initially regulated by the maternal Wnt pathway and later by a Bmp-mediated pathway. Overexpression experiments of wild-type and chimeric Hex constructs indicate that Hex functions as a transcriptional repressor and its overexpression led to the downregulation of bmp2b and wnt8 expression and the expansion of chordin expression. These findings provide further evidence that the zebrafish YSL is the functional equivalent of the mouse visceral endoderm and that extraembryonic structures may regulate early embryonic patterning in many vertebrates.  (+info)

A molecular pathway leading to endoderm formation in zebrafish. (50/1642)

BACKGROUND: Several potentially important regulators of vertebrate endoderm development have been identified, including Activin-related growth factors and their receptors; transcriptional regulators encoded by the genes Mixer, Xsox17, and HNF3beta; zebrafish One-eyed pinhead (Oep), a member of the Cripto/FRL-1/Cryptic family of epidermal growth factor related proteins (EGF-CFC); and the product of the zebrafish locus casanova, which plays an essential cell-autonomous role in endoderm formation. RESULTS: Using overexpression studies and the analysis of different zebrafish mutants, we have assembled a molecular pathway that leads to endoderm formation. We report that a zebrafish Sox17 homologue is expressed during gastrulation exclusively in the endoderm and that casanova mutants lack all sox17 expression. Overexpression of mixer induces ectopic sox17-expressing cells in wild-type embryos and promotes endoderm formation in oep mutants, but does not rescue sox17 expression or endoderm formation in casanova mutants. Overexpression of a constitutively active form of the type I transforming growth factor beta (TGF-beta) receptor TARAM-A also promotes sox17 expression in wild-type and oep mutant embryos, but not in casanova mutants. We also show that the Nodal-related molecules Cyclops and Squint and the transmembrane protein Oep are essential for normal mixer expression. CONCLUSIONS: The data indicate that the following pathway leads to zebrafish endoderm formation: Cyclops and Squint activate receptors such as TARAM-A; Oep also appears to act upstream of such receptors; signals transduced by these receptors lead to the expression of mixer, Mixer then acts through casanova to promote the expression of sox17 and differentiation of the endoderm.  (+info)

Neuralization of the Xenopus embryo by inhibition of p300/ CREB-binding protein function. (51/1642)

p300/ CREB-binding protein (CBP) is a transcriptional coactivator for a plethora of transcription factors and plays critical roles in signal transduction pathways. We report that the inhibition of p300/CBP function in the Xenopus embryo abolishes non-neural tissue formation and, strikingly, initiates neural induction and primary neurogenesis in the entire embryo. The observed neuralization is achieved in the absence of anterior or posterior gene expression, suggesting that neural fate activation and anterior patterning may represent distinct molecular events. We further demonstrate that the neuralizing and anteriorizing activities of chordin and noggin are separable properties of these neural inducers. This study reveals that all embryonic cells possess intrinsic neuralizing capability and that p300/CBP function is essential for embryonic germ layer formation and neural fate suppression during vertebrate embryogenesis.  (+info)

casanova plays an early and essential role in endoderm formation in zebrafish. (52/1642)

The cellular and molecular mechanisms that regulate endoderm development in vertebrates have only recently begun to be explored. Here we show that the zebrafish locus casanova plays an early and essential role in this process. casanova mutants lack a gut tube and do not express any molecular markers of endoderm differentiation. The early endodermal expression of genes such as axial, gata5, and fkd2 does not initiate in casanova mutants, indicating that the endoderm is defective from the onset of gastrulation. Mosaic analysis demonstrates that casanova functions cell autonomously within the endodermal progenitors. We also report the isolation of a zebrafish homologue of Mixer, a gene important for early endoderm formation in Xenopus. casanova does not encode zebrafish Mixer, and mixer expression is normal in casanova mutants, indicating that casanova acts downstream of, or parallel to, mixer to promote endoderm formation. We further find that the forerunner cells, a specialized group of noninvoluting dorsal mesendodermal cells, do not form in casanova mutants. Studies of casanova mutants do not support an important role for the forerunner cells in either dorsal axis or tail development, as has been previously proposed. In addition, although different populations of mesodermal precursors are generated normally in casanova mutants, morphogenetic defects in the heart, vasculature, blood, and kidney are apparent, suggesting a possible role for the endoderm in morphogenesis of these organs.  (+info)

Vertebrate development: Multiple phases to endoderm formation. (53/1642)

Recent results support a two-step model for endoderm formation in amphibian embryos, in which endoderm is initially specified by localised maternal factors, including the transcription factor VegT, but is then maintained by extracellular signalling molecules of the transforming growth factor-beta family.  (+info)

The nuclear receptor fetoprotein transcription factor is coexpressed with its target gene HNF-3beta in the developing murine liver, intestine and pancreas. (54/1642)

During organogenesis, the winged helix hepatocyte nuclear factor 3beta (HNF-3beta) protein participates in regulating gene transcription in the developing esophagus, trachea, liver, lung, pancreas, and intestine. Hepatoma cell transfection studies identified a critical HNF-3beta promoter factor, named UF2-H3beta, and here, we demonstrate that UF2-H3beta is identical to the fetoprotein transcription factor (FTF). In situ hybridization studies of mouse embryos demonstrate that FTF expression initiates in the foregut endoderm during liver and pancreatic morphogenesis (day 9) and that earlier expression of FTF is observed in the yolk sac endoderm, branchial arch and neural crest cells (day 8). Abundant FTF hybridization signals are observed throughout morphogenesis of the liver, pancreas, and intestine and its expression continues in the epithelial cells of these adult organs. In day 17 mouse embryos and adult pancreas, however, expression of FTF becomes restricted to the exocrine acinar and ductal epithelial cells.  (+info)

Polarity of the mouse embryo is anticipated before implantation. (55/1642)

In most species, the polarity of an embryo underlies the future body plan and is determined from that of the zygote. However, mammals are thought to be an exception to this; in the mouse, polarity is generally thought to develop significantly later, only after implantation. It has not been possible, however, to relate the polarity of the preimplantation mouse embryo to that of the later conceptus due to the lack of markers that endure long enough to follow lineages through implantation. To test whether early developmental events could provide cues that predict the axes of the postimplantation embryo, we have used the strategy of injecting mRNA encoding an enduring marker to trace the progeny of inner cell mass cells into the postimplantation visceral endoderm. This tissue, although it has an extraembryonic fate, plays a role in axis determination in adjacent embryonic tissue. We found that visceral endoderm cells that originated near the polar body (a marker of the blastocyst axis of symmetry) generally became distal as the egg cylinder formed, while those that originated opposite the polar body tended to become proximal. It follows that, in normal development, bilateral symmetry of the mouse blastocyst anticipates the polarity of the later conceptus. Moreover, our results show that transformation of the blastocyst axis of symmetry into the axes of the postimplantation conceptus involves asymmetric visceral endoderm cell movement. Therefore, even if the definitive axes of the mouse embryo become irreversibly established only after implantation, this polarity can be traced back to events before implantation.  (+info)

FAST-1 is a key maternal effector of mesoderm inducers in the early Xenopus embryo. (56/1642)

We have examined the role of the maternally encoded transcription factor FAST-1 in the establishment of the mesodermal transcriptional program in Xenopus embryos. FAST-1 has been shown to associate with Smad2 and Smad4, transducers of TGFbeta superfamily signals, in response to stimulation by several TGFbeta superfamily ligands. The FAST-1/Smad2/Smad4 complex binds and activates a 50 bp activin responsive element identified in the promoter of the meso-endodermal marker Mix.2. We have now used three complementary approaches to demonstrate that FAST-1 is a central regulator of mesoderm induction by ectopic TGFbeta superfamily ligands and during endogenous patterning: ectopic expression of mutationally activated FAST-1, ectopic expression of dominant inhibitory FAST-1, and injection of a blocking antibody specific for FAST-1. Expression of constitutively transcriptionally active FAST-1 fusion protein (FAST-VP16(A)) in prospective ectoderm can directly induce the same set of general and dorsal mesodermal genes, as well as some endodermal genes, as are induced by activin or Vg1. In intact embryos, this construct can induce secondary axes similar to those induced by activin or Vg1. Conversely, expression of a FAST-1-repressor fusion (FAST-En(R)) in prospective ectoderm blocks induction of mesodermal genes by activin, while expression of FAST-En(R) in intact embryos prevents general/dorsal mesodermal gene expression and axial development. Injection of a blocking antibody specific for FAST-1 prevents induction of mesodermal response genes by activin or Vg1, but not by FGF. In intact embryos, this antibody can prevent the expression of early mesodermal markers and inhibit axis formation, demonstrating that FAST-1 is a necessary component of the first steps in the specification of mesoderm.  (+info)