(1/10563) Endocytosis: EH domains lend a hand.

A number of proteins that have been implicated in endocytosis feature a conserved protein-interaction module known as an EH domain. The three-dimensional structure of an EH domain has recently been solved, and is likely to presage significant advances in understanding molecular mechanisms of endocytosis.  (+info)

(2/10563) Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding.

Internalization of agonist-activated G protein-coupled receptors is mediated by non-visual arrestins, which also bind to clathrin and are therefore thought to act as adaptors in the endocytosis process. Phosphoinositides have been implicated in the regulation of intracellular receptor trafficking, and are known to bind to other coat components including AP-2, AP180 and COPI coatomer. Given these observations, we explored the possibility that phosphoinositides play a role in arrestin's function as an adaptor. High-affinity binding sites for phosphoinositides in beta-arrestin (arrestin2) and arrestin3 (beta-arrestin2) were identified, and dissimilar effects of phosphoinositide and inositol phosphate on arrestin interactions with clathrin and receptor were characterized. Alteration of three basic residues in arrestin3 abolished phosphoinositide binding with complete retention of clathrin and receptor binding. Unlike native protein, upon agonist activation, this mutant arrestin3 expressed in COS1 cells neither supported beta2-adrenergic receptor internalization nor did it concentrate in coated pits, although it was recruited to the plasma membrane. These findings indicate that phosphoinositide binding plays a critical regulatory role in delivery of the receptor-arrestin complex to coated pits, perhaps by providing, with activated receptor, a multi-point attachment of arrestin to the plasma membrane.  (+info)

(3/10563) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation.

Mouse cytomegalovirus (MCMV) early gene expression interferes with the major histocompatibility complex class I (MHC class I) pathway of antigen presentation. Here we identify a 48 kDa type I transmembrane glycoprotein encoded by the MCMV early gene m06, which tightly binds to properly folded beta2-microglobulin (beta2m)-associated MHC class I molecules in the endoplasmic reticulum (ER). This association is mediated by the lumenal/transmembrane part of the protein. gp48-MHC class I complexes are transported out of the ER, pass the Golgi, but instead of being expressed on the cell surface, they are redirected to the endocytic route and rapidly degraded in a Lamp-1(+) compartment. As a result, m06-expressing cells are impaired in presenting antigenic peptides to CD8(+) T cells. The cytoplasmic tail of gp48 contains two di-leucine motifs. Mutation of the membrane-proximal di-leucine motif of gp48 restored surface expression of MHC class I, while mutation of the distal one had no effect. The results establish a novel viral mechanism for downregulation of MHC class I molecules by directly binding surface-destined MHC complexes and exploiting the cellular di-leucine sorting machinery for lysosomal degradation.  (+info)

(4/10563) The optically determined size of exo/endo cycling vesicle pool correlates with the quantal content at the neuromuscular junction of Drosophila larvae.

According to the current theory of synaptic transmission, the amplitude of evoked synaptic potentials correlates with the number of synaptic vesicles released at the presynaptic terminals. Synaptic vesicles in presynaptic boutons constitute two distinct pools, namely, exo/endo cycling and reserve pools (). We defined the vesicles that were endocytosed and exocytosed during high K+ stimulation as the exo/endo cycling vesicle pool. To determine the role of exo/endo cycling vesicle pool in synaptic transmission, we estimated the quantal content electrophysiologically, whereas the pool size was determined optically using fluorescent dye FM1-43. We then manipulated the size of the pool with following treatments. First, to change the state of boutons of nerve terminals, motoneuronal axons were severed. With this treatment, the size of exo/endo cycling vesicle pool decreased together with the quantal content. Second, we promoted the FM1-43 uptake using cyclosporin A, which inhibits calcineurin activities and enhances endocytosis. Cyclosporin A increased the total uptake of FM1-43, but neither the size of exo/endo cycling vesicle pool nor the quantal content changed. Third, we increased the size of exo/endo cycling vesicle pool by forskolin, which enhances synaptic transmission. The forskolin treatment increased both the size of exo/endo cycling vesicle pool and the quantal content. Thus, we found that the quantal content was closely correlated with the size of exo/endo cycling vesicle pool but not necessarily with the total uptake of FM1-43 fluorescence by boutons. The results suggest that vesicles in the exo/endo cycling pool primarily participate in evoked exocytosis of vesicles.  (+info)

(5/10563) Identification of low density lipoprotein receptor-related protein-2/megalin as an endocytic receptor for seminal vesicle secretory protein II.

The low density lipoprotein receptor-related protein-2/megalin (LRP-2) is an endocytic receptor that is expressed on the apical surfaces of epithelial cells lining specific regions of the male and female reproductive tracts. In the present study, immunohistochemical staining revealed that LRP-2 is also expressed by epithelial cells lining the ductal region and the ampulla of the rat seminal vesicle. To identify LRP-2 ligands in the seminal vesicle, we probed seminal vesicle fluid with 125I-labeled LRP-2 in a gel-blot overlay assay. A 100-kDa protein (under non-reducing conditions) was found to bind the radiolabeled receptor. The protein was isolated and subjected to protease digestion, and the proteolytic fragments were subjected to mass spectroscopic sequence analysis. As a result, the 100-kDa protein was identified as the seminal vesicle secretory protein II (SVS-II), a major constituent of the seminal coagulum. Using purified preparations of SVS-II and LRP-2, solid-phase binding assays were used to show that the SVS-II bound to the receptor with high affinity (Kd = 5.6 nM). The binding of SVS-II to LRP-2 was inhibited using a known antagonist of LRP-2 function, the 39-kDa receptor-associated protein RAP. Using a series of recombinant subfragments of SVS-II, the LRP-2 binding site was mapped to a stretch of repeated 13-residue modules located in the central portion of the SVS-II polypeptide. To evaluate the ability of LRP-2 to mediate 125I-SVS-II endocytosis and lysosomal degradation, ligand clearance assays were performed using differentiated mouse F9 cells, which express high levels of LRP-2. Radiolabeled SVS-II was internalized and degraded by the cells, and both processes were inhibited by antibodies to LRP-2 or by RAP. The results indicate that LRP-2 binds SVS-II and can mediate its endocytosis leading to lysosomal degradation.  (+info)

(6/10563) 5'-Nucleotidase activity of mouse peritoneal macrophages. II. Cellular distribution and effects of endocytosis.

The diazonium salt of sulfanilic acid (DASA) can inactivate about 80% of the total 5'-nucleotidase of viable macrophages. The remaining 20% can be inactivated if the cells are first lysed in detergent, and presumably represents an intracellular pool of 5'-nucleotidase. The bulk of this pool may represent cytoplasmic vesicles derived from plasma membrane by endocytosis. This internal compartment is expanded up to threefold immediately after the cells have ingested a large latex load. This is consistent with previous observations on the internalization of 5'-nucleotidase in latex phagosomes. In latex-filled cells this intracellular pool of enzyme is inactivated over a few hours, and the cells then slowly increase their enzyme activity to nearly normal levels. However, 24 h after latex ingestion the metabolism of 5'-nucleotidase in these recovered cells is abnormal, as the rate of enzyme degradation is about twice the normal rate, and the DASA-insensitive enzyme pool in these cells is strikingly diminished. This may reflect effects of the accumulated indigestible particles on the fate of incoming pinocytic vesicles or on newly synthesized plasma membrane precursor. Another endocytic stimulus, concanavalin A, also reduces the total cell 5'-nucleotidase activity. This effect, which is time and temperature dependent, can be prevented by the competitive sugar alpha-methyl mannose. The concanavalin A inhibition can be reversed in the absence of new protein synthesis or in cells cultivated in serum-free conditions. It is not known whether the effect of concanavalin A on 5'-nucleotidase depends upon the interiorizaiton of plasma membrane or is strictly associated with events at the cell surface.  (+info)

(7/10563) PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function.

The Transmembrane 4 Superfamily member, PETA-3/CD151, is ubiquitously expressed by endothelial cells in vivo. In cultured human umbilical vein endothelial cells PETA-3 is present on the plasma membrane and predominantly localises to regions of cell-cell contact. Additionally, this protein is abundant within an intracellular compartment which accounts for up to 66% of the total PETA-3 expressed. Intracellular PETA-3 showed colocalisation with transferrin receptor and CD63 suggesting an endosomal/lysosomal localisation which was supported by immuno-electronmicroscopy studies. Co-immunoprecipitation experiments investigating possible interactions of PETA-3 with other molecules demonstrated associations with several integrin chains including beta1, beta3, beta4, (alpha)2, (alpha)3, (alpha)5, (alpha)6 and provide the first report of Transmembrane 4 Superfamily association with the (alpha)6beta4 integrin. Using 2-colour confocal microscopy, we demonstrated similar localisation of PETA-3 and integrin chains within cytoplasmic vesicles and endothelial cell junctions. In order to assess the functional implications of PETA-3/integrin associations, the effect of anti-PETA-3 antibodies on endothelial function was examined. Anti-PETA-3 mAb inhibited endothelial cell migration and modulated in vitro angiogenesis, but had no detectable effect on neutrophil transendothelial migration. The broad range of integrin associations and the presence of PETA-3 with integrins both on the plasma membrane and within intracellular vesicles, suggests a primary role for PETA-3 in regulating integrin trafficking and/or function.  (+info)

(8/10563) CFTR channel insertion to the apical surface in rat duodenal villus epithelial cells is upregulated by VIP in vivo.

cAMP activated insertion of the cystic fibrosis transmembrane conductance regulator (CFTR) channels from endosomes to the apical plasma membrane has been hypothesized to regulate surface expression and CFTR function although the physiologic relevance of this remains unclear. We previously identified a subpopulation of small intestinal villus epithelial cells or CFTR high expressor (CHE) cells possessing very high levels of apical membrane CFTR in association with a prominent subapical vesicular pool of CFTR. We have examined the subcellular redistribution of CFTR in duodenal CHE cells in vivo in response to the cAMP activated secretagogue vasoactive intestinal peptide (VIP). Using anti-CFTR antibodies against the C terminus of rodent CFTR and indirect immunofluorescence, we show by quantitative confocal microscopy that CFTR rapidly redistributes from the cytoplasm to the apical surface upon cAMP stimulation by VIP and returns to the cytoplasm upon removal of VIP stimulation of intracellular cAMP levels. Using ultrastructural and confocal immunofluorescence examination in the presence or absence of cycloheximide, we also show that redistribution was not dependent on new protein synthesis, changes in endocytosis, or rearrangement of the apical cytoskeleton. These observations suggest that physiologic cAMP activated apical membrane insertion and recycling of CFTR channels in normal CFTR expressing epithelia contributes to the in vivo regulation of CFTR mediated anion transport.  (+info)