Cocaine enhances myocarditis induced by encephalomyocarditis virus in murine model. (57/642)

This study was designed to investigate whether cocaine can exacerbate viral myocarditis and increase its incidence. Recent clinical evidence suggests that cocaine abuse increases the incidence of myocarditis. However, it has not been directly demonstrated that cocaine exposure enhances murine myocarditis. BALB/c mice were divided into eight groups: saline control, encephalomyocarditis virus (EMCV), 10 mg/kg cocaine (Coc-10), 30 mg/kg cocaine (Coc-30), 50 mg/kg cocaine (Coc-50), EMCV+Coc-10, EMCV+Coc-30, EMCV+Coc-50. After inoculation with EMCV, the mice were treated daily with either cocaine or saline for 90 days. Mice were euthanized at different days after EMCV inoculation. Mortality was recorded and myocarditis severity was evaluated. The mortality of the myocarditis mice treated with cocaine increased significantly, from 22% (EMCV) to 25.7% (Coc-10+EMCV), 41.4% (Coc-30+EMCV), and 51.4% (Coc-50+EMCV) (P < 0.05), respectively. The incidence and severity of inflammatory cell infiltration and myocardial lesions was higher in infected mice exposed to cocaine. Cocaine administered only before infection did not exacerbate myocarditis. Norepinephrine (NE) assay showed that cocaine exposure significantly increased myocardial NE concentration but this increase was partially inhibited in infected animals. Adrenalectomy abolished the effect of cocaine on mortality. Furthermore, propranolol, a beta-blocker, significantly decreased the enhancing effects of cocaine on myocarditis mice. In conclusion, cocaine increases the severity and mortality of viral myocarditis in mice. Increased catecholamines may be a major factor responsible for this effect.  (+info)

Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation. (58/642)

Encephalomyocarditis virus (EMCV) is the prototype member of the cardiovirus genus of picornaviruses. For cardioviruses and the related aphthoviruses, the first protein segment translated from the plus-strand RNA genome is the Leader protein. The aphthovirus Leader (173-201 amino acids) is an autocatalytic papain-like protease that cleaves translation factor eIF-4G to shut off cap-dependent host protein synthesis during infection. The less characterized cardioviral Leader is a shorter protein (67-76 amino acids) and does not contain recognizable proteolytic motifs. Instead, these Leaders have sequences consistent with N-terminal zinc-binding motifs, centrally located tyrosine kinase phosphorylation sites, and C-terminal, acid-rich domains. Deletion mutations, removing the zinc motif, the acid domain, or both domains, were engineered into EMCV cDNAs. In all cases, the mutations gave rise to viable viruses, but the plaque phenotypes in HeLa cells were significantly smaller than for wild-type virus. RNA transcripts containing the Leader deletions had reduced capacity to direct protein synthesis in cell-free extracts and the products with deletions in the acid-rich domains were less effective substrates at the L/P1 site, for viral proteinase 3Cpro. Recombinant EMCV Leader (rL) was expressed in bacteria and purified to homogeneity. This protein bound zinc stoichiometrically, whereas protein with a deletion in the zinc motif was inactive. Polyclonal mouse sera, raised against rL, immunoprecipitated Leader-containing precursors from infected HeLa cell extracts, but did not detect significant pools of the mature Leader. However, additional reactions with antiphosphotyrosine antibodies show that the mature Leader, but not its precursors, is phosphorylated during viral infection. The data suggest the natural Leader may play a role in regulation of viral genome translation, perhaps through a triggering phosphorylation event.  (+info)

Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. (59/642)

Incorporation of an internal ribosome entry site (IRES) into the gene therapy vector represents a promising strategy to efficiently co-express several gene products from the same promoter. However, vector systems that utilize the encephalomyocarditis virus IRES express the downstream gene much less efficiently than the upstream gene. In this study, we compared four IRESes isolated from human genes against the EMCV IRES, using beta-galactosidase and chloramphenicol acetyl transferase genes as reporters, to evaluate their potential for providing better expression of the downstream gene. We found that an IRES from the eukaryotic initiation factor 4G gene mediates greater than 100-fold higher expression of the downstream gene compared with the EMCV IRES in four different cell lines tested. Other mammalian IRESes displayed more variable results and smaller enhancement of downstream gene expression in three different cell lines tested. Furthermore, while the efficiency of the IRES from the vascular endothelium growth factor gene was not significantly higher than the EMCV IRES under normoxic conditions, expression was significantly increased under hypoglycemic conditions, suggesting that the VEGF IRES could be exploited in cancer gene therapy to preferentially target expression of therapeutic genes at the relatively hypoglycemic cores of tumors.  (+info)

Gene transfer of Fc-fusion cytokine by in vivo electroporation: application to gene therapy for viral myocarditis. (60/642)

Among a number of techniques for gene transfer in vivo, the direct injection of plasmid DNA into muscle is simple, inexpensive and safe. Although combining direct DNA injection with in vivo electroporation increases the efficiency of gene transfer into muscle, applications of this method have remained limited because of the relatively low expression level. To overcome this problem, we developed a plasmid vector that expresses a secretory protein as a fusion protein with the noncytolytic immunoglobulin Fc portion and used it for electroporation-mediated viral interleukin 10 (vIL-10) expression in vivo. The fusion cytokine vIL-10/mutFc was successfully expressed and the peak serum concentration of vIL-10 was almost 100-fold (195 ng/ml) higher than with a non-fusion vIL-10 expression plasmid. The expressed fusion cytokine suppressed the phytohemagglutinin-induced IFN-gamma production by human peripheral blood mononuclear cells and decreased the mortality in a mouse viral myocarditis model as effectively as vIL-10 expression. These results demonstrate that the transfer of plasmid DNA expressing a noncytolytic Fc-fusion cytokine is useful to deliver enhanced levels of cytokine without altering general biological activities. This simple and efficient system should provide a new approach to gene therapy for human diseases and prove very useful for investigating the function of newly discovered secretory protein genes.  (+info)

Rotavirus protein NSP3 shuts off host cell protein synthesis. (61/642)

A recombinant vaccinia virus encoding rotavirus protein NSP3 driven by an internal ribosome entry site (IRES) from the encephalomyocarditis (EMC) virus was able to abate protein synthesis in BSC1 cells by 25-fold, with as much as 30% of the remaining protein synthesis being NSP3. Hence NSP3 shuts off host cell protein synthesis down to the level seen during rotavirus infection but is unable to prevent translation from EMC IRES-driven genes. This effect was abolished by deletions in the eIF4G-binding (aa 274-313) and the dimerization (aa 150-206) but not the viral mRNA-binding (aa 83-149) domains, supporting that NSP3 functions in vivo as a dimer. Binding of eIF4G by NSP3 has been implicated in interfering with mRNA 5'-3' circularization, hence such circularization is essential for translation in mammalian cells.  (+info)

Interferons specifically suppress the translation from the internal ribosome entry site of hepatitis C virus through a double-stranded RNA-activated protein kinase-independent pathway. (62/642)

Interferon (IFN) therapy is used worldwide as the best available treatment for hepatitis C virus (HCV) infection; however, little is known about how IFN or other drugs work against liver diseases. The effect of 6 drugs (glycyrrhizin, ursodeoxycholic acid, ribavirin, methylprednisolone, IFN-alpha, and IFN-beta) on HCV RNA translation from the HCV internal ribosome entry site (IRES) was investigated, using a bicistronic reporter containing the HCV IRES. IFNs suppressed both cap-dependent and HCV IRES-dependent translation, with HCV IRES-dependent translation being more significantly suppressed. In contrast to HCV IRES, IFN did not suppress either foot-and-mouth disease virus IRES-dependent or encephalomyocarditis virus IRES-dependent translation more than it suppressed cap-dependent translation. Moreover, dominant inhibition of HCV IRES-dependent over cap-dependent translation depended neither on the double-stranded RNA-activated protein kinase activation nor on La protein function. These results indicate a novel antiviral effect of IFNs against HCV.  (+info)

Novel role for calcium-independent phospholipase A(2) in the macrophage antiviral response of inducible nitric-oxide synthase expression. (63/642)

The double-stranded (ds) RNA-dependent protein kinase (PKR) is a primary regulator of antiviral responses; however, the ability of dsRNA to activate nuclear factor-kappa B (NF-kappa B) and dsRNA + interferon gamma (IFN-gamma) to stimulate inducible nitric-oxide synthase (iNOS) expression by macrophages isolated from PKR(-/-) mice suggests that signaling pathways in addition to PKR participate in antiviral activities. We have identified a novel phospholipid-signaling cascade that mediates macrophage activation by dsRNA and viral infection. Bromoenol lactone (BEL), a selective inhibitor of the calcium-independent phospholipase A(2) (iPLA(2)), prevents dsRNA- and virus-induced iNOS expression by RAW 264.7 cells and mouse macrophages. BEL does not modulate dsRNA-induced interleukin 1 expression, nor does it affect dsRNA-induced NF-kappa B activation. Protein kinase A (PKA) and the cAMP response element binding protein (CREB) are downstream targets of iPLA(2), because selective PKA inhibition prevents dsRNA-induced iNOS expression, and the inhibitory actions of BEL on dsRNA-induced iNOS expression are overcome by the direct activation of PKA. In addition, BEL inhibits dsRNA-induced CREB phosphorylation and CRE reporter activation. PKR does not participate in iPLA(2) activation or iNOS expression, because dsRNA stimulates iPLA(2) activity and dsRNA + IFN-gamma induces iNOS expression and nitric oxide production to similar levels by macrophages isolated from PKR(+/+) and PKR(-/-) mice. These findings support a PKR-independent signaling role for iPLA(2) in the antiviral response of macrophages.  (+info)

The antiviral response to gamma interferon. (64/642)

A role for alpha/beta interferon (IFN-alpha/beta) in the IFN-gamma antiviral response has long been suggested. Accordingly, possible roles for autocrine or double-stranded-RNA (dsRNA)-induced IFN-alpha/beta in the IFN-gamma response were investigated. Use was made of wild-type and a variety of mutant human fibrosarcoma cell lines, including mutant U5A cells, which lack a functional IFN-alpha/beta receptor and hence an IFN-alpha/beta response. IFN-gamma did not induce detectable levels of IFN-alpha/beta in any of the cell lines, nor was the IFN-gamma response per se dependent on autocrine IFN-alpha/beta. On the other hand, a number of responses to dsRNA [poly(I). poly(C)] and encephalomyocarditis virus were greatly enhanced by IFN-gamma pretreatment (priming) of wild-type cells or of mutant cells lacking an IFN-alpha/beta response; these include the primary induction of dsRNA-inducible mRNAs, including IFN-beta mRNA, and, to a lesser extent, the dsRNA-mediated activation of the p38 mitogen-activated protein (MAP) kinase(s). IFN-gamma priming of mRNA induction by dsRNA is dependent on JAK1 and shows biphasic kinetics, with an initial rapid (<30-min) response being followed by a more substantial effect on overnight incubation. The IFN-gamma-primed dsRNA responses appear to be subject to modulation through the p38, phosphatidylinositol 3-kinase, and ERK1/ERK2 MAP kinase pathways. It can be concluded that despite efficient priming of IFN-beta production, the IFN-alpha/beta pathways play no significant role in the primary IFN-gamma antiviral response in these cell-virus systems. The observed IFN-gamma priming of dsRNA responses, on the other hand, will likely play a significant role in combating virus infection in vivo.  (+info)