Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2. (41/140)

The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichia coli, purified and crystallized. Crystals diffract to beyond 2.5 A resolution and belong to the orthorhombic space group P2(1)2(1)2(1). Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.  (+info)

A humanized murine monoclonal antibody protects mice either before or after challenge with virulent Venezuelan equine encephalomyelitis virus. (42/140)

A humanized monoclonal antibody (mAb) has been developed and its potential to protect from or cure a Venezuelan equine encephalomyelitis virus (VEEV) infection was evaluated. The VEEV-neutralizing, protective murine mAb 3B4C-4 was humanized using combinatorial antibody libraries and phage-display technology. Humanized VEEV-binding Fabs were evaluated for virus-neutralizing capacity, then selected Fabs were converted to whole immunoglobulin (Ig) G1, and stable cell lines were generated. The humanized mAb Hy4-26C, designated Hy4 IgG, had virus-neutralizing capacity similar to that of 3B4C-4. Passive antibody protection studies with purified Hy4 IgG were performed in adult Swiss Webster mice. As little as 100 ng Hy4 IgG protected 90 % of mice challenged with 100 intraperitoneal (i.p.) mean morbidity (MD(50)) doses of virulent VEEV (Trinidad donkey) 24 h after antibody transfer; also, 500 mug Hy4 IgG protected 80 % of mice inoculated with 100 intranasal MD(50) doses of VEEV. Moreover, 10 mug passive Hy4 IgG protected 70 % of mice from a VEEV challenge dose as great as 10(7) i.p. MD(50). Hy4 IgG also protected mice from challenge with another epizootic VEEV variety, 1C (P676). Importantly, therapeutic administration of the humanized mAb to mice already infected with VEEV cured 90 % of mice treated with Hy4 IgG within 1 h of VEEV inoculation and 75 % of mice treated 24 h after virus infection.  (+info)

Pseudotyped viruses permit rapid detection of neutralizing antibodies in human and equine serum against Venezuelan equine encephalitis virus. (43/140)

Virus envelope proteins are the primary targets of neutralizing antibody responses. The epitopes recognized differ sufficiently between virus subtypes and species to distinguish viruses and provide an important basis for disease diagnosis. Venezuelan equine encephalitis virus (VEEV) causes acute febrile illness in humans and has high mortality in equines. The most specific detection methods for serum antibodies use live virus in neutralization assays or in blocking enzyme linked immunosorbent assays. However, work with Venezuelan equine encephalitis virus requires biosafety level 3 containment and select agent security in the United States. We report two new assays for detection of Venezuelan equine encephalitis virus neutralizing antibody responses, based on virus pseudotypes. The first provides detection by marker gene expression after 20 hours and is particularly suited for high-throughput screening; the second uses a new, rapid virus entry assay to give readouts within 1 hour. Both assays are safe, sensitive, and in general recapitulate neutralizing antibody titers obtained by conventional plaque reduction assays. Each is suitable as a rapid primary screen for detection of neutralizing antibodies against Venezuelan equine encephalitis virus.  (+info)

Tunicamycin enhances neuroinvasion and encephalitis in mice infected with Venezuelan equine encephalitis virus. (44/140)

Venezuelan equine encephalitis (VEE) viruses cause natural outbreaks in humans and horses and represent a significant biothreat agent. The effect of tunicamycin on the course of the disease in mice with VEE was investigated, and the combined effects of these agents was characterized. CD-1 mice given 2.5 microg of tunicamycin had >1,000-fold more virus in the brain 48 hours after infection with the virulent VEE strain V3000 and > or =100-fold of the attenuated strain V3034 at all tested times than did untreated mice, indicating enhanced neuroinvasion. Tunicamycin did not alter the viremia profiles of these viruses nor the replication of V3000 in the brain itself. Tunicamycin alone caused ultrastructural blood-brain barrier damage, yet neuroinvasion by V3000 in treated mice appeared to occur via the olfactory system rather than the blood-brain barrier. Tunicamycin-treated, V3000-infected mice also exhibited earlier and more severe weight loss, neurological signs, neuronal infection, neuronal necrosis and apoptosis, and inflammation than untreated, V3000-infected mice. The mean survival time of tunicamycin-treated, V3000-infected mice was 7.3 days versus 9.9 days for untreated, V3000-infected mice. These studies imply that animals that ingest toxins similar to tunicamycin, including the agent of annual ryegrass toxicity in livestock, are conceivably at greater risk from infections by encephalitis viruses and that humans and horses exposed to agents acting similar to tunicamycin may be more susceptible to encephalitis caused by VEE viruses. The exact mechanism of tunicamycin-enhanced neuroinvasion by VEE viruses requires further study.  (+info)

Recombinant alphaviruses are safe and useful serological diagnostic tools. (45/140)

Serological assays for diagnosis of Venezuelan equine encephalitis virus (VEEV) currently require bio-safety level 3 facilities and select agent certification to produce antigens, reference sera, or viral stocks. Rapid identification of VEEV infection is required to respond to human and equine outbreaks of encephalitis caused by that virus and can be useful for epidemiologic surveillance. Alphavirus (Sindbis)-based recombinant viruses that express VEEV structural proteins are attenuated in animal models, thus representing an alternative to the handling of virulent infectious virus. Virus and viral antigens from recombinant Sindbis/VEE constructs engineered to express structural proteins from multiple VEEV subtypes were evaluated as diagnostic reagents in VEEV-specific serological assays, e.g., plaque reduction neutralization test (PRNT), hemagglutination inhibition (HI) assay, and complement fixation (CF) test. Chimeric viruses were produced efficiently in cell culture and were as effective as the parental virus for identifying infection of humans, horses, and rodents in these serological assays.  (+info)

Pathogenesis of Venezuelan equine encephalitis virus infection in mice and hamsters. (46/140)

The pathogenesis of Venezuelan equine encephalitis (VEE) virus infection was compared in intraperitoneally inoculated mice (n = 24, 6 to 8 weeks old) and hamsters (n = 9, 90-110 g) using histopathology and immunohistochemical localization of VEE virus antigen. Infected mice developed paralysis, and the majority died by 9 days after inoculation. In contrast, hamsters did not survive beyond 3 days after inoculation, and they did not develop any neurologic signs. VEE virus antigen, demonstrated by immunoperoxidase staining, and pathologic changes were present in extraneural organs of both mice and hamsters. There was more severe involvement in hamsters, particularly in Peyer's patches of the distal small intestine. There was a severe encephalomyelitis in mice, but pathologic changes were not well established in the brains of hamsters before death. VEE virus antigen was widespread in the central nervous system of both mice and hamsters. VEE virus was found to be highly neurotropic in hamsters and had a similar distribution in the brain as in mice, but hamsters died from their extraneural disease before major central nervous system disease developed.  (+info)

Alpha-beta T cells provide protection against lethal encephalitis in the murine model of VEEV infection. (47/140)

We evaluated the safety and immunogenicity of a chimeric alphavirus vaccine candidate in mice with selective immunodeficiencies. This vaccine candidate was highly attenuated in mice with deficiencies in the B and T cell compartments, as well as in mice with deficient gamma-interferon responsiveness. However, the level of protection varied among the strains tested. Wild type mice were protected against lethal VEEV challenge. In contrast, alpha/beta (alphabeta) TCR-deficient mice developed lethal encephalitis following VEEV challenge, while mice deficient in gamma/delta (gammadelta) T cells were protected. Surprisingly, the vaccine potency was diminished by 50% in animals lacking interferon-gamma receptor alpha chain (R1)-chain and a minority of vaccinated immunoglobulin heavy chain-deficient (microMT) mice survived challenge, which suggests that neutralizing antibody may not be absolutely required for protection. Prolonged replication of encephalitic VEEV in the brain of pre-immunized mice is not lethal and adoptive transfer experiments indicate that CD3(+) T cells are required for protection.  (+info)

Infection and dissemination of Venezuelan equine encephalitis virus in the epidemic mosquito vector, Aedes taeniorhynchus. (48/140)

The mosquito Aedes taeniorhynchus is an important epidemic vector of Venezuelan equine encephalitis virus (VEEV), but detailed studies of its infection are lacking. We compared infection by an epidemic VEEV strain to that by an enzootic strain using virus titrations, immunohistochemistry, and a virus expressing the green fluorescent protein. Ae. taeniorhynchus was more susceptible to the epidemic strain, which initially infected the posterior midgut and occasionally the anterior midgut and cardia. Once dissemination beyond the midgut occurred, virus was present in nearly all tissues. Transmission of the epidemic strain to mice was first detected 4 days after infection. In contrast, the enzootic strain did not efficiently infect midgut cells but replicated in muscles and nervous tissue on dissemination. Because VEEV emergence can depend on adaptation to epidemic vectors, these results show that epidemic/enzootic strain comparisons not only comprise a useful model system to study alphavirus transmission by mosquitoes, but also have important public health implications.  (+info)