Clinical, pathologic, immunohistochemical, and virologic findings of eastern equine encephalomyelitis in two horses. (1/31)

Natural eastern equine encephalitis alphavirus (EEEV) infection was diagnosed in two adult horses with anorexia and colic, changes in sensorium, hyperexcitability, and terminal severe depression. Myocardium, tunica muscularis of stomach, intestine, urinary bladder, and spleen capsule had coagulative necrosis and perivascular lymphocytic infiltrate. Central nervous system (CNS) lesions were diffuse polioencephalomyelitis with leptomeningitis characterized by perivascular T lymphocyte cuffing, marked gliosis, neuronophagia, and multifocal microabscesses. Lesions were more prominent within cerebral cortex, thalamus, hypothalamus, and mesencephalon. EEEV was identified in the cytoplasm of cardiac myocytes and smooth muscle cells of spleen, stomach, intestine, urinary bladder, blood vessels, and dendritic cells. In the CNS, EEEV-positive cells included neurons, astrocytes, oligodendrocytes, microglia, and neutrophils. EEEV was isolated from the CNS of both horses. The detailed description of the encephalic and spinal EEEV localization and the findings of EEEV in extraneural tissues contribute to the understanding of this important multisystemic zoonotic disease.  (+info)

Detection of eastern equine encephalitis virus in infected mosquitoes using a monoclonal antibody-based antigen-capture enzyme-linked immunosorbent assay. (2/31)

Surveillance of mosquito populations for virus activity is not often performed by small, vector-control districts because they do not have the financial resources to use virus isolation, or newer methods such as the polymerase chain reaction. Consequently, development and refinements of rapid, sensitive, and simple enzyme-linked immunosorbent assays (ELISAs) applicable to a wide variety of public health settings are justified. We have developed an antigen-capture ELISA for the detection of eastern equine encephalitis (EEE) virus in mosquitoes that uses both monoclonal capture and detector antibodies. The sensitivity of this assay is 4.0-5.0 log10 plaque-forming units/ml, which is comparable to previously published EEE antigen-capture assays developed with polyclonal antibody reagents. This test identifies only North American strains of EEE virus and does not react with either western equine encephalitis or Highlands J viruses. Test sensitivity was enhanced by sonicating mosquito pools, treating them with Triton X-100, and increasing the time and temperature of antigen incubation. The conversion of this ELISA to a monoclonal antibody-based format should result in a readily standardizable and transferable assay that will permit laboratories lacking virus isolation facilities to conduct EEE virus surveillance.  (+info)

Eastern equine encephalomyelitis virus infection in a horse from California. (3/31)

A yearling quarter horse, which was raised in southern California, received routine vaccinations for prevention of infection by Eastern equine encephalomyelitis virus (EEEV). One week later, severe neurologic signs developed, and the horse was humanely destroyed. A vaccine-related encephalomyelitis was later suspected. A final diagnosis of EEEV infection was established on the basis of acute onset of the neurologic signs, histopathologic and serologic testing, and isolation and molecular characterization of EEEV from brain tissue. The vaccine was extensively tested for viral inactivation. Nucleotide sequences from the vaccine and the virus isolated in the affected horse were also compared. In California, arboviral encephalomyelitides are rarely reported, and EEEV infection has not previously been documented. This report describes the occurrence of EEEV infection in the horse and the investigation to determine the source of infection, which was not definitively identified.  (+info)

Isolation of eastern equine encephalitis virus and West Nile virus from crows during increased arbovirus surveillance in Connecticut, 2000. (4/31)

The emergence of the West Nile virus (WNV) in the northeastern United States has drawn emphasis to the need for expanded arbovirus surveillance in Connecticut. Although the state of Connecticut began a comprehensive mosquito-screening program in 1997, only since 1999 have there been efforts to determine the prevalence of arboviruses in bird populations in this state. Herein, we report on our results of an arbovirus survey of 1,704 bird brains. Included in this report are the first known isolations of eastern equine encephalitis virus (EEEV) from crows and data on the geographic and temporal distribution of 1,092 WNV isolations from crow species. Moreover, these nine isolations of EEEV identify regions of Connecticut where the virus is rarely found. With the exception of WNV and EEEV, no other arboviruses were isolated or detected. Taken together, these data illustrate the distribution of avian borne EEEV and WNV in 2000 and support the need for ongoing avian arbovirus surveillance in Connecticut.  (+info)

Transmission of eastern equine encephalomyelitis virus in central Alabama. (5/31)

A site near Tuskegee, Alabama was examined for vector activity of eastern equine encephalomyelitis (EEE) virus in 2001. More than 23,000 mosquitoes representing 8 genera and 34 species were collected during a 21-week period, and five species, Culiseta melanura, Aedes vexans, Coquillettidia perturbans, Culex erraticus, and Uranotaenia sapphirina, were examined for the presence of virus using a nested reverse transcriptase-polymerase chain reaction for EEE virus. Each species was infected at various times of the mosquito season (May-September) with different minimum infection rates (MIRs). Culiseta melanura had the highest MIR (20.2) and positive pools were detected from late May to mid-September. Aedes vexans had an MIR of 2.2 and was infected early in the season (June), while Cq. perturbans exhibited a much higher field infection rate (9.9) with all positive pools collected in August. Culiseta melanura is a likely endemic vector in central Alabama, while Ae. vexans and Cq. perturbans probably function as bridge vectors. Culex erraticus, the most common mosquito in the habitat (54% of total collections), had an MIR of 3.2, and was persistently infected from mid-June to mid-September. This is the first report of high rates of EEE virus infection in this species, a member of the tropical subgenus Melanoconion. Uranotaenia sapphirina, considered to feed on amphibians and possibly reptiles, had an MIR of 5.6, with positive pools spanning a four-month period. This suggests that species other than birds may serve as a reservoir for EEE in hardwood swamps in the Southeastern United States and elsewhere. The lengthy period of mosquito infection with EEE virus, coupled with the diverse habits of the vectors and their proximity to a population center, indicate the importance of monitoring EEE virus activity in the Mid-South.  (+info)

Nested multiplex RT-PCR for detection and differentiation of West Nile virus and eastern equine encephalomyelitis virus in brain tissues. (6/31)

A traditional nested reverse transcription-polymerase chain reaction (RT-PCR) assay specific for eastern equine encephalomyelitis (EEE) virus was designed to multiplex with a previously described West Nile (WN) virus nested RT-PCR assay. Differentiation of EEE and WN was based on base pair size of the amplified product. One hundred fifty-seven mammalian and avian brain tissues were tested by EEE/WN nested multiplex RT-PCR, EEE nested RT-PCR, and WN nested RT-PCR, and results were compared with other diagnostic test results from the same animals. Serological and virus isolation testing confirmed the results of the multiplex PCR assay. When compared with cell culture virus isolation, the multiplex assay was shown to be more sensitive in detecting the presence of EEE or WN virus in brain tissues. The multiplex assay was shown to be sensitive and specific for North American EEE and WN and provided a rapid means of identifying both viruses in brain tissues. No apparent sacrifice in sensitivity was observed in the multiplex procedure compared with the individual EEE and WN nested RT-PCR assays. Data collected from an additional 485 multiplex RT-PCR tests conducted during the summer and fall of 2002 further support the validity of the procedure.  (+info)

Avian host preference by vectors of eastern equine encephalomyelitis virus. (7/31)

An important variable in the amplification and escape from the enzootic cycle of the arboviral encephalitides is the degree of contact between avian hosts and mosquito vectors. To analyze this interaction in detail, blood-fed mosquitoes that were confirmed vectors of eastern equine encephalomyelitis (EEE) virus were collected in 2002 from an enzootic site in central Alabama during the time this virus was actively transmitted. Avian-derived blood meals were identified to the species level of the host, and the proportion derived from each species was compared with the overall composition of the avifauna at the study site. The EEE vector mosquito species fed significantly more on some bird species and less on other species than expected given the overall abundance, biomass, or surface area of the local avifauna. When viewed collectively, these data suggest that these mosquitoes are selectively targeting particular avian species.  (+info)

Identification of reptilian and amphibian blood meals from mosquitoes in an eastern equine encephalomyelitis virus focus in central Alabama. (8/31)

Uranotaenia sapphirina, Culex erraticus, and Cx. peccator were collected in an enzootic eastern equine encephalomyelitis (EEE) virus focus in central Alabama (Tuskegee National Forest) from 2001 to 2003 and analyzed for virus as well as host selection. EEE virus was detected in each species every year except 2003, when pools of Cx. peccator were negative. Most (97%) of the 130 Cx. peccator blood meals identified were from ectothermic hosts; 3% were from birds. Among blood meals from reptiles (approximately 75% of the total), 81% were from Agkistrodon piscivorus (cottonmouth); all amphibian blood meals (approximately 25%) were from Rana spp. with > 50% taken from the bullfrog R. catesbeiana. Host identifications were made from 131 of 197 Cx. erraticus, but only 3 (2%) were derived from ectothermic species. Identification of Ur. sapphirina blood meals proved difficult and only 2 of 35 hosts were determined. Both were from R. catesbeiana. Ectothermic species are possible EEE virus reservoirs in the southeastern United States where species such as Cx. peccator and Ur. sapphirina occur with large, diverse reptilian, amphibian, and avian populations such as those at the Tuskegee site.  (+info)