Amphibian embryos as a model system for organ engineering: in vitro induction and rescue of the heart anlage. (65/1711)

Beating hearts can be induced under in vitro conditions when the dorsal blastopore lip (including the zone of Spemann organizer) is treated with Suramin. In contrast, untreated organizer forms dorsal mesodermal derivatives as notochord and somites. When those in vitro produced heart precursor tissues are transplanted ectopically in the posterior trunk area of early larvae, secondary beating heart structures will be formed. Furthermore, the replacement of the heart primordium of the host embryo by heart tissue induced under in vitro conditions will result in the rescue of the heart anlage. This model could be a valuable tool for the study of the multi-step molecular mechanisms of heart structure induction under in vitro conditions and vasculogenesis after transplantation into the host embryo.  (+info)

Migration of mesonephric cells into the mammalian gonad depends on Sry. (66/1711)

In mammals, the primary step in male sex determination is the initiation of testis development which depends on the expression of the Y-linked testis determining gene, Sry. The mechanisms by which Sry controls this process are unknown. Studies showed that cell migration from the adjacent mesonephros only occurs into XY gonads; however, it was not known whether this effect depended on Sry, another Y-linked gene, or the presence of one versus two X chromosomes. Here we provide genetic proof that Sry is the only Y-linked gene necessary for cell migration into the gonad. Cell migration from the mesonephros into the differentiating gonad is consistently associated with Sty's presence and with testis cord formation, suggesting that cell migration plays a critical role in the initiation of testis cord development. The induction of cell migration represents the earliest signaling pathway yet assigned to Sry.  (+info)

Tissue interactions in the induction of anterior pituitary: role of the ventral diencephalon, mesenchyme, and notochord. (67/1711)

Rathke's pouch, the epithelial primordium of the anterior pituitary, differentiates in close topographical and functional association with the ventral diencephalon. It is still not known whether the ventral diencephalon acts as the initial inducer of pituitary development. The roles of the adjacent mesenchyme and notochord, two other tissues located in close proximity to Rathke's pouch, in this process are even less clear. In this report we describe an in vitro experimental system that reproduces the earliest steps of anterior pituitary development. We provide evidence that the ventral diencephalon from 2- to 4-day-old chick embryos is able to function as an inducer of pituitary development and can convert early chick embryonic head ectoderm, which is not involved normally in pituitary development, into typical anterior pituitary tissue. This induction is contact-dependent. In our experimental system, there is a requirement for the supporting action of mesenchyme, which is independent of the mesenchyme source. Transplantation of the notochord into the lateral head region of a six-somite chick embryo induces an epithelial invagination, suggesting that the notochord induces the outpouching of the roof of the stomodeal ectoderm that results in formation of Rathke's pouch and causes the close contact between this ectoderm and the ventral diencephalon. Finally, we demonstrate that the ventral diencephalon from e9.5-e11.5 mouse embryos is also an efficient inducer of anterior pituitary differentiation in chick embryonic lateral head ectoderm, suggesting that the mechanism of anterior pituitary induction is conserved between mammals and birds, using the same, or similar, signaling pathways.  (+info)

Suppression of muscle fate by cellular interaction is required for mesenchyme formation during ascidian embryogenesis. (68/1711)

The tadpole larva of the ascidian Halocynthia roretzi has several hundred mesenchyme cells in its trunk. Mesenchyme cells are exclusively derived from the B8.5 and B7.7 blastomere pairs of the 110-cell embryo. It has been believed that specification of mesenchyme cells is an autonomous process. In the present study, we have demonstrated that presumptive-mesenchyme blastomeres isolated from early 32-cell embryos did not express mesenchyme-specific features, whereas those isolated after the late 64-cell stage developed mesenchyme markers autonomously. Results of experiments involving coisolation and recombination of blastomeres showed that cellular interaction with adjacent presumptive-endoderm blastomeres during the late 32- and early 64-cell stages is required for mesenchyme formation. When such interaction was absent, the presumptive-mesenchyme blastomeres developed into muscle cells. Therefore, a signal from endoderm precursor blastomeres promotes mesenchyme fate, suppressing the muscle fate that is specified by ooplasmic muscle determinants. In Halocynthia, the muscle actin gene was precociously activated in mesenchyme-muscle precursor blastomeres at the 32-cell stage, and the mesenchyme and muscle fates were separated into two daughter blastomeres at the next cleavage. In presumptive-mesenchyme blastomeres at the 64-cell stage, expression of the muscle actin gene was immediately down-regulated by the signal from the neighboring endoderm precursor blastomeres. Thus, mesenchyme formation involves a novel mechanism of fate specification in ascidians, where formation of mesenchyme cells requires cellular interaction that suppresses muscle fate in the mesenchyme precursor blastomeres.  (+info)

Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. (69/1711)

During embryonic development, approximately one-half of the spinal motoneurons initially generated are lost during a wave of programmed cell death (PCD). Classical studies in this system laid the basis of much work on the role and control of neuronal cell death during development. However, we have little information concerning the timing of cell death in motoneuron pools at different rostrocaudal levels, especially in rodents. We developed a novel protocol for whole-mount TUNEL labeling that allows apoptotic nuclei to be visualized in whole-mount preparations of embryonic spinal cord; double labeling with antibodies to Islet 1/2 showed that nearly all TUNEL-positive cells were motoneurons. In chicken and mouse embryos, the density of TUNEL-positive nuclei was specifically increased following target ablation. The pattern of naturally occurring motoneuron PCD was studied in spinal cords from different species and ages: chick (E4.5-E9.0), mouse (E11.5-E15.5), and rat (E13.5-E16. 5). In all species, motoneuron PCD is first apparent at cervical levels and last at sacral levels. However, motoneuron PCD does not follow a strict rostrocaudal sequence. Following cervical motoneuron PCD, TUNEL profiles are first observed at lumbar levels in chick but at thoracic levels in rat. At a given rostrocaudal level, medial motoneurons tend to die before lateral populations, but here too there are exceptions. Motoneuron cell death is thus regulated in a highly stereotyped manner during development of vertebrate spinal cord. Our technique will provide a basis for the monitoring even localized changes in this pattern.  (+info)

Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. (70/1711)

Decapentaplegic (Dpp) signaling determines the number of cells that migrate dorsally to form the dorsal primary branch during tracheal development. We report that Dpp signaling is also required for the differentiation of one of three different cell types in the dorsal branches, the fusion cell. In Mad mutant embryos or in embryos expressing dominant negative constructs of the two type I Dpp receptors in the trachea the number of cells expressing fusion cell-specific marker genes is reduced and fusion of the dorsal branches is defective. Ectopic expression of Dpp or the activated form of the Dpp receptor Tkv in all tracheal cells induces ectopic fusions of the tracheal lumen and ectopic expression of fusion gene markers in all tracheal branches. Among the fusion marker genes that are activated in the trachea in response to ectopic Dpp signaling is Delta. In conditional Notch loss of function mutants additional tracheal cells adopt the fusion cell fate and ectopic expression of an activated form of the Notch receptor in fusion cells results in suppression of fusion cell markers and disruption of the branch fusion. The number of cells that express the fusion cell markers in response to ectopic Dpp signaling is increased in Notch(ts1) mutants, suggesting that the two signaling pathways have opposing effects in the selection of the fusion cells in the dorsal branches.  (+info)

An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. (71/1711)

BACKGROUND: Signals from anterior endodermal cells that express the homeobox gene Hex initiate development of the most rostral tissues of the mouse embryo. The dorsal/anterior endoderm of the Xenopus gastrula, which expresses Hex and the putative head-inducing gene cerberus, is proposed to be equivalent to the mouse anterior endoderm. Here, we report the origin and signalling properties of this population of cells in the early Xenopus embryo. RESULTS: Xenopus anterior endoderm was found to derive in part from cells at the centre of the blastocoel floor that express XHex, the Xenopus cognate of Hex. Like their counterparts in the mouse embryo, these Hex-expressing blastomeres moved to the dorsal side of the Xenopus embryo as gastrulation commenced, and populated deep endodermal adjacent to Spemann's organiser. Experiments involving the induction of secondary axes confirmed that XHex expression was associated with anterior development. Ventral misexpression of XHex induced ectopic cerberus expression and conferred anterior signalling properties to the endoderm. Unlike the effect of misexpressing cerberus, these signals could not neuralise overlying ectoderm. CONCLUSIONS: XHex expression reveals the unexpected origin of an anterior signalling centre in Xenopus, which arises in part from the centre of the blastula and localises to the deep endoderm adjacent to Spemann's organiser. Signals originating from these endodermal cells impart an anterior identity to the overlying ectoderm, but are insufficient for neural induction. The anterior movement of Hex-expressing cells in both Xenopus and mouse embryos suggests that this process is a conserved feature of vertebrate development.  (+info)

Clonal analysis of Drosophila embryonic neuroblasts: neural cell types, axon projections and muscle targets. (72/1711)

An experimental analysis of neurogenesis requires a detailed understanding of wild-type neural development. Recent DiI cell lineage studies have begun to elucidate the family of neurons and glia produced by each Drosophila embryonic neural precursor (neuroblast). Here we use DiI labeling to extend and clarify previous studies, but our analysis differs from previous studies in four major features: we analyze and compare lineages of every known embryonic neuroblast; we use an in vivo landmark (engrailed-GFP) to increase the accuracy of neuroblast identification; we use confocal fluorescence and Nomarski microscopy to collect three-dimensional data in living embryos simultaneously for each DiI-labeled clone, the engrailed-GFP landmark, and the entire CNS and muscle target field (Nomarski images); and finally, we analyze clones very late in embryonic development, which reveals novel cell types and axon/dendrite complexity. We identify the parental neuroblasts for all the cell types of the embryonic CNS: motoneurons, intersegmental interneurons, local interneurons, glia and neurosecretory cells (whose origins had never been determined). We identify muscle contacts for every thoracic and abdominal motoneuron at stage 17. We define the parental neuroblasts for neurons or glia expressing well-known molecular markers or neurotransmitters. We correlate Drosophila cell lineage data with information derived from other insects. In addition, we make the following novel conclusions: (1) neuroblasts at similar dorsoventral positions, but not anteroposterior positions, often generate similar cell lineages, and (2) neuroblasts at similar dorsoventral positions often produce the same motoneuron subtype: ventral neuroblasts typically generate motoneurons with dorsal muscle targets, while dorsal neuroblasts produce motoneurons with ventral muscle targets. Lineage data and movies can be found at http://www.biologists. com/Development/movies/dev8623.html http://www.neuro.uoregon. edu/doelab/lineages/  (+info)