The Parkes Lecture. Heat and the testis. (33/4782)

The evidence for the lower temperature of the testes of many mammals is summarized, and the reasons suggested for the descent of the testes into a scrotum are discussed. Descriptions are given of the various techniques used for studying the effects of heat on the testis, whole body heating, local heating of the testes (by inducing cryptorchidism, scrotal insulation or immersion of the scrotum in a water bath), and heating of tissue or cell preparations in vitro. The effects of heat are discussed, effects on the testis (weight, histology, physiology, biochemistry and endocrinology), on the numbers and motility of spermatozoa in rete testis fluid and semen, on fertilizing ability of spermatozoa and on the subsequent development of the embryos produced when spermatozoa from heated testes are used to fertilize normal ova. The possible mechanisms for the damaging effects of heat are discussed, as well as the importance of heat-induced abnormalities in male reproduction in domestic animals and humans.  (+info)

Trophectoderm differentiation in the bovine embryo: characterization of a polarized epithelium. (34/4782)

Blastocytst formation is dependent on the differentiation of a transporting epithelium, the trophectoderm, which is coordinated by the embryonic expression and cell adhesive properties of E-cadherin. The trophectoderm shares differentiative characteristics with all epithelial tissues, including E-cadherin-mediated cell adhesion, tight junction formation, and polarized distribution of intramembrane proteins, including the Na-K ATPase. The present study was conducted to characterize the mRNA expression and distribution of polypeptides encoding E-cadherin, beta-catenin, and the tight junction associated protein, zonula occludens protein 1, in pre-attachment bovine embryos, in vitro. Immunocytochemistry and gene specific reverse transcription--polymerase chain reaction methods were used. Transcripts for E-cadherin and beta-catenin were detected in embryos of all stages throughout pre-attachment development. Immunocytochemistry revealed E-cadherin and beta-catenin polypeptides evenly distributed around the cell margins of one-cell zygotes and cleavage stage embryos. In the morula, detection of these proteins diminished in the free apical surface of outer blastomeres. E-cadherin and beta-catenin became restricted to the basolateral membranes of trophectoderm cells of the blastocyst, while maintaining apolar distributions in the inner cell mass. Zonula occludens protein 1 immunoreactivity was undetectable until the morula stage and first appeared as punctate points between the outer cells. In the blastocyst, zonula occludens protein 1 was localized as a continuous ring at the apical points of trophectoderm cell contact and was undetectable in the inner cell mass. These results illustrate that the gene products encoding E-cadherin, beta-catenin and zonula occludens protein 1 are expressed and maintain cellular distribution patterns consistent with their predicted roles in mediating trophectoderm differentiation in in vitro produced bovine embryos.  (+info)

Bex1, a gene with increased expression in parthenogenetic embryos, is a member of a novel gene family on the mouse X chromosome. (35/4782)

Parthenogenetic and normal blastocysts were compared using differential display analysis as a means to identify new imprinted genes. A single gene was identified with increased expression in parthenogenetic blastocysts, suggesting it might be an imprinted gene expressed from the maternally inherited allele. The gene, named Bex1 (brainexpressedX-linked gene), maps near Plp on the mouse X chromosome and to Xq22 in humans. Database homology searches revealed two additional uncharacterized cDNAs similar to Bex1 that were named Bex2 and Bex3. Allele-specific expression analysis of Bex1 using F1 blastocysts indicated an excess of transcript expressed from the maternally inherited allele compared with the paternally inherited allele. This excess level of transcript derived from the maternally inherited allele may be due to imprinted X inactivation of the paternally inherited allele in the extraembryonic lineages of female embryos rather than a result of genomic imprinting.  (+info)

Regulation of chondrocyte differentiation by Cbfa1. (36/4782)

Cbfa1, a developmentally expressed transcription factor of the runt family, was recently shown to be essential for osteoblast differentiation. We have investigated the role of Cbfa1 in endochondral bone formation using Cbfa1-deficient mice. Histology and in situ hybridization with probes for indian hedgehog (Ihh), collagen type X and osteopontin performed at E13.5, E14.5 and E17.5 demonstrated a lack of hypertrophic chondrocytes in the anlagen of the humerus and the phalanges and a delayed onset of hypertrophy in radius/ulna in Cbfa1-/- mice. Detailed analysis of Cbfa1 expression using whole mount in situ hybridization and a lacZ reporter gene reveled strong expression not only in osteoblasts but also in pre-hypertrophic and hypertrophic chondrocytes. Our studies identify Cbfa1 as a major positive regulator of chondrocyte differentiation.  (+info)

Heart specific expression of mouse BMP-10 a novel member of the TGF-beta superfamily. (37/4782)

Here we report the cloning and expression of murine BMP-10, a novel member of the TGF-beta superfamily. In the mouse embryo, BMP-10 expression begins at 9.0 d.p.c. and is restricted to the developing heart. Initially, BMP-10 expression localizes to the trabeculated part of the common ventricular chamber and to the bulbus cordis region. After 12.5 d.p.c., additional BMP-10 expression is seen in the atrial wall. The data presented here suggest that BMP-10 plays an important role in trabeculation of the embryonic heart.  (+info)

Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. (38/4782)

We have cloned and characterized a new member of the bone morphogenetic protein/transforming growth factor beta (BMP/TGFbeta) superfamily, growth differentiation factor 11 (Gdf11), from rat incisor pulp RNA by reverse transcription-polymerase chain reaction using degenerate primers. The mature carboxyl-terminal domain encoded by Gdf11 is most closely related to Gdf8, being 90% identical to the mouse gene. Northern blot analysis revealed Gdf11 is expressed in adult dental pulp and brain. In situ hybridization of sections and whole-mount embryos demonstrated Gdf11 is first strongly expressed in restricted domains at 8.5 days post coitus (dpc) when it is highest in the tail bud. At 10.5 dpc, it is expressed in the branchial arches, limb bud, tail bud and posterior dorsal neural tube. Later, it is expressed in terminally-differentiated odontoblasts, the nasal epithelium, retina and specific regions of the brain.  (+info)

Expression of the rat homologue of the Drosophila fat tumour suppressor gene. (39/4782)

We have sequenced and defined the expression during rat embryogenesis of the protocadherin fat, the murine homologue of a Drosophila tumour suppressor gene. As previously described for human fat, the sequence encodes a large protocadherin with 34 cadherin repeats, five epidermal growth factor (EGF)-like repeats containing a single laminin A-G domain and a putative transmembrane portion followed by a cytoplasmic sequence. This cytoplasmic sequence shows homology to the b-catenin binding regions of classical cadherin cytoplasmic tails and also ends with a PDZ domain-binding motif. In situ hybridization studies at E15 show that fat is predominately expressed in fetal epithelial cell layers and in the CNS, although expression is also seen in tongue musculature and condensing cartilage. Within the CNS, expression is seen in the germinal regions and in areas of developing cortex, and this neural expression pattern is also seen at later embryonic (E18) and postnatal stages. No labelling was seen in adult tissues except in the CNS, where the remnant of the germinal zones, as well as the dentate gyrus, continue to express fat.  (+info)

Fjx1, the murine homologue of the Drosophila four-jointed gene, codes for a putative secreted protein expressed in restricted domains of the developing and adult brain. (40/4782)

The Drosophila gene four jointed (fj) codes for a secreted or cell surface protein important for growth and differentiation of legs and wings and for proper development of the eyes. Here we report the cloning of the mouse four-jointed gene (fjx1) and its pattern of expression in the brain during embryogenesis and in the adult. In the neural plate, fjx1 is expressed in the presumptive forebrain and midbrain, and in rhombomere 4, however a small rostral/medial area of the forebrain primordium is devoid of expression. Expression of fjx1 in the neural tube can be divided into three phases. (1) In the embryonic brain fjx1 is expressed in two patches of neuroepithelium: in the midbrain tectum and the telencephalic vesicles. (2) In fetal and early postnatal brain fjx1 is expressed mainly by the primordia of layered telencephalic structures: cortex (ventricular layer and cortical plate), olfactory bulb (subependymal layer and in the mitral cell layer). In addition expression is observed in the superior colliculus. (3) In the adult, fjx1 is expressed by neurones evenly distributed in the telencephalon (isocortex, striatum, hippocampus, olfactory bulb, piriform cortex), in the Purkinje cell layer of the cerebellum, and numerous medullary nuclei. In the embryo, strong expression can further be seen in the apical ectodermal ridge of fore- and hindlimbs and in the ectoderm of the branchial arches.  (+info)