Mass concentration and elemental composition of PM10 in classrooms. (1/102)

OBJECTIVES: To investigate the sources of high concentrations of particles of < 10 microns diameter (PM10) in classrooms, observed in a previous study on childhood exposure to PM10, and to study the correlation between classroom and outdoor concentrations of mass and elements of PM10. METHODS: Measurements of PM10 were conducted in two schools and outdoors in Amsterdam, the Netherlands. Averaging time was 24 hours for the outdoor measurements and both 8 hours (school time) and 24 hours for the classroom measurements. Analysis by x ray fluorescence was used to measure the elemental composition of 55 samples from the 11 days when measurements were conducted simultaneously in both classrooms and outdoors. RESULTS: For most elements, classroom concentrations were considerably higher than outdoor concentrations, especially during school hours. The highest classroom/outdoor ratios were found for the elements from soils Si, Ca, and Ti. The only measured elements that were not increased were S, Br, Pb, and Cl, which are dominated by non-crustal sources. For S, Br, and Pb, which are generally associated with particles < 1 micron, significant correlations between classroom and outdoor concentrations and between the two classrooms were found. The other elements generally had low correlations. CONCLUSIONS: The results show that the high PM10 concentrations found in our classrooms are probably due to resuspension of coarse particles or suspension of soil material. Due to these excess coarse particles, the correlation between classroom and outdoor concentrations is lower for elements associated with coarse particles than for elements associated with fine particles. As the general composition of PM10 in classrooms differs from the composition of PM10 in ambient air, the high PM10 mass concentrations in classrooms can probably not be directly compared with ambient air quality guidelines.  (+info)

Cytological changes in chlorhexidine-resistant isolates of Pseudomonas stutzeri. (2/102)

Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) have been used to examine chlorhexidine diacetate (CHA)-sensitive and -resistant isolates of Pseudomonas stutzeri and to determine the effects of CHA on the cells. Significant differences were observed in the structure, size and elemental composition of CHA-sensitive and -resistant cells. Treatment with CHA produced considerably greater changes in CHA-sensitive cells, with widespread peeling of the outer membrane, a substantial loss of cytoplasmic electron-dense material and extensive lysis. Cells from the resistant isolates showed no blebbing of the outer membrane and no structural damage. X-ray mapping confirmed the difference in CHA uptake between CHA-sensitive and CHA-resistant cells. It is proposed that changes in the outer membrane form a major mechanism of resistance to CHA in P. stutzeri.  (+info)

Characterization of vernix caseosa: water content, morphology, and elemental analysis. (3/102)

Recent studies have prompted interest in the use of epidermal barrier creams as protective biofilms for very low birthweight preterm infants. The key to understanding the role of epidermal barrier films is an elucidation of their interaction with water and a basic knowledge of their composition. In this study, we investigated the morphologic properties and elemental composition of the naturally occurring biofilm, vernix caseosa. This biofilm is typically lacking in preterm infants and its production coincides in utero with terminal differentiation of the epidermis and formation of the stratum corneum. Significantly, vernix (80.5+/-1.0% H2O) had a much higher water content than other barrier creams (Eucerin: 17.1+/-0.6%, Aquaphor: 0.33+/-0.03%, Ilex: 0.19+/-0.02%, petrolatum: 0.03+/-0.01%; all p<0.05). Phase contrast microscopy of vernix showed multiple cellular elements with nucleic "ghosts" embedded in a putative lipid matrix. Transmission electron microscopy revealed flattened structures approximately 1-2 microm in thickness with distinct cellular envelopes indicative of differentiated corneocytes. Compared with mature corneocytes in adult stratum corneum, vernix corneocytes appeared swollen, the density of the keratin filaments was less, and there was a relative lack of tonofilament orientation. Cryofractured specimens were examined by cryoscanning electron microscopy with subsequent elemental localization by X-ray beam analysis. The findings indicate the high water content of vernix is largely compartmentalized within fetal corneocytes. These results are consistent with the novel view of vernix as a "fluid phase" stratum corneum consisting of a hydrophobic lipid matrix with embedded fetal corneocytes possessing unique biomechanical and water-binding properties.  (+info)

Inductively coupled plasma emission spectroscopic and flame photometric analysis of goat epididymal fluid. (4/102)

AIM: The elemental composition of the epididymal luminal fluid (ELF) in adult goat (Capra indica) was investigated. METHODS: ELF was collected by micropuncture from twelve sites along the epididymal duct. The elemental contents was analyzed with inductively coupled plasma (ICP) emission spectroscopy, a microanalytical technique that can simultaneously measure many elements in minute volumes of sample. The Na and K concentrations were determined by flame photometry. RESULTS: ICP spectroscopy showed the presence of copper, calcium, nickel, iron, magnesium, chromium, titanium and zinc in ELF, with fluctuating levels at different sites along the length of the epididymis. Cadmium, cobalt, lead and manganese were not found. The Na+/K+ ratio was seen to be higher at the initial segments of the epididymis and lower at the distal. CONCLUSION: It is proposed that the observed characteristic distribution of elements in ELF may have far reaching implications in sperm maturation and storage known to occur in the epididymis.  (+info)

Natal homing in a marine fish metapopulation. (5/102)

Identifying natal origins of marine fishes is challenging because of difficulties in conducting mark-recapture studies in marine systems. We used natural geochemical signatures in otoliths (ear bones) to determine natal sources in weakfish (Cynoscion regalis), an estuarine-spawning marine fish, in eastern North America. Spawning site fidelity ranged from 60 to 81%, comparable to estimates of natal homing in birds and anadromous fishes. These data were in contrast to genetic analyses of population structure in weakfish. Our findings highlight the need for consideration of spatial processes in fisheries models and have implications for the design of marine reserves in coastal regions.  (+info)

Element concentrations in urine of patients suffering from chronic arsenic poisoning. (6/102)

In order to know the element levels in the urine of patients with chronic arsenic poisoning caused by arsenic assimilated from burning coal via air and food, we investigated various elements in the urine of 16 patients with this disease and 16 controls living in the same county in Guizhou Province of China. Concentrations of 25 elements (Al, As, Ba, Be, Bi, Ca, Cd, Cr, Cu, Fe, Ga, Mg, Mn, Mo, Ni, P, Pb, Rb, Sb, Se, Sn, Sr, Ti, V and Zn) were determined by an inductively coupled plasma mass spectrometer or an inductively coupled plasma atomic emission spectrometer. The average concentrations of Cu, Ga and Sn as well as As in the patients were significantly higher, and those of Cr, Rb, Sr and Ti in the patients were significantly lower than the control values. Al, Ba, Mn, Ni and Se were under detection limit in the patients, though they could be detected in the controls. There were no positive correlations between the concentration of As and the concentrations of other elements, including Cu, Ga and Sn in the patients. The results of this study suggest that As from burning coal might influence the urinary excretion of some elements.  (+info)

Multielement determination and speciation of major-to-trace elements in black tea leaves by ICP-AES and ICP-MS with the aid of size exclusion chromatography. (7/102)

A multielement determination of major-to-trace elements in black tea leaves and their tea infusions was carried out by ICP-AES (inductively coupled plasma atomic emission spectrometry) and ICP-MS (inductively coupled plasma mass spectrometry). Tea infusions were prepared as usual tea beverage by brewing black tea leaves in boiling water for 5 min. About 40 elements in tea leaves and tea infusions could be determined over the wide concentration range in 8 orders of magnitude. The extraction efficiency of each element was estimated as the ratio of its concentration in tea infusions to that in tea leaves. From the experimental results for the extraction efficiencies, the elements in black tea leaves were classified into three characteristic groups: (i) highly-extractable elements (>55%): Na, K, Co, Ni, Rb, Cs and Tl, (ii) moderately-extractable elements (20-55%): Mg, Al, P, Mn and Zn, and (iii) poorly-extractable elements (<20%): Ca, Fe, Cu, Sr, Y, Zr, Mo, Sn, Ba and lanthanoid elements. Furthermore, speciation of major-to-trace elements in tea infusions was performed by using a combined system of size exclusion chromatography (SEC) and ICP-MS (or ICP-AES). As a result, many diverse elements were found to be present as complexes associated with large organic molecules in tea infusions.  (+info)

Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth's earliest life. (8/102)

A quartz-pyroxene rock interpreted as a banded iron formation (BIF) from the island of Akilia, southwest Greenland, contains (13)C-depleted graphite that has been claimed as evidence for the oldest (>3850 million years ago) life on Earth. Field relationships on Akilia document multiple intense deformation events that have resulted in parallel transposition of Early Archean rocks and significant boudinage, the tails of which commonly form the banding in the quartz-pyroxene rock. Geochemical data possess distinct characteristics consistent with an ultramafic igneous, not BIF, protolith for this lithology and the adjacent schists. Later metasomatic silica and iron introduction have merely resulted in a rock that superficially resembles a BIF. An ultramafic igneous origin invalidates claims that the carbon isotopic composition of graphite inclusions represents evidence for life at the time of crystallization.  (+info)