Dermal exposure to chromium in electroplating. (9/64)

OBJECTIVES: The aim of the study was to measure the dermal and respiratory exposure levels of hexavalent chromium during electroplating work. METHODS: Potential dermal exposure of the body was measured with patch samples and actual exposure of hands with hand-wash samples. For comparison, personal air samples were also collected. RESULTS: The exposure varied widely between workers. The range of body and hand exposure to the electroplating solution was 0.17-28.1 mg/h and 0.04-6.37 mg/h, respectively. Hands and lower limbs were the most contaminated body parts. CONCLUSIONS: The results of breathing zone samples and dermal exposure did not correlate with each other. In manual electroplating processes, dermal exposure was higher than in semi-automatic and automatic processes. The amount of hexavalent chromium the workers were exposed to is probably high enough to cause a risk of skin sensitization.  (+info)

Formation characterization of hydroxyapatite on titanium by microarc oxidation and hydrothermal treatment. (10/64)

Microarc oxidation (MAO) was performed on titanium in an electrolyte containing calcium glycerphosphate (Ca-GP) and calcium acetate (CA) using a direct current power supply. It was found that the MAO method is suitable forming a ceramic coating containing Ca and P using titanium, and that films display a porous and rough structure on their surface. Samples with a Ca/P ratio of 1.71 were hydrothermally treated in water solution whose pH was adjusted to 7.0-11.0 by adding NaOH at 190 degrees C for 10 h in an autoclave. Hydroxyapatite crystals were precipitated on the film surface after the hydrothermal treatment, and the amount of hydroxyapatite precipitated increased with increasing pH of water solution. The oxide film composition was semiquantitatively analyzed with an electron probe microanalyzer. The microstructures on the sample surfaces were observed by scanning electron microscopy before and after the hydrothermal treatment. The topography of the oxide film was imaged with an atomic force microscope. Its cross section was observed by scanning electron microscopy after being coated with a thin Au film. The surface structures of the films were analyzed by X-ray diffraction.  (+info)

Nafion-coated bismuth film and nafion-coated mercury film electrodes for anodic stripping voltammetry combined on-line with ICP-mass spectrometry. (11/64)

Nafion-coated bismuth film electrodes (NCBFEs) and Nafion-coated mercury film electrodes (NCMFEs) were used to electrochemically preconcentrate metal analytes for subsequent analysis by inductively coupled plasma-mass spectrometry (ICP-MS). Either type of electrodes is part of a thin-layer electrochemical flow cell that is positioned upstream of a microconcentric nebulizer for the ICP-MS. Performances of these electrodes were compared in terms of the analytical "figures of merit" (e.g., dynamic ranges, reproducibility, hydrodynamic stability, and elimination of matrix effects detrimental to ICP-MS). The coupled technique (ASV-ICP-MS) is found to possess a wide dynamic range (at least 4 to 5 orders of magnitude) and to be reproducible. Both electrodes are much more stable than the thin mercury film electrode (TMFE) traditionally used for ASV-ICP-MS, with the lifetime of the NCBFE exceeding 8 h. Adopting these electrodes for ASV-ICP-MS overcomes the problems associated with a TMFE, the erosion of which decreases the sample throughput, affects the analysis precision, and contaminates conventional glass nebulizers and spray chambers of the spectrometer. The medium exchange procedure inherent in ASV is successfully implemented with a two-valve flow injection system for the accumulation of trace Cd2+ into the electrode from a certified seawater sample, followed by stripping Cd into a solution that is compatible to the ICP-MS operation.  (+info)

Controlling the electrochemically active area of carbon fiber microelectrodes by the electrodeposition and selective removal of an insulating photoresist. (12/64)

A new and simple method permits control of the electrochemically active area of a carbon fiber microelectrode. An electrophoretic photoresist insulates the 10-microm-diameter carbon fiber microelectrodes. Photolysis of the photoresist followed by immersion of the exposed area into a developing solution reveals electroactive carbon fiber surface. The electroactive surface area exposed can be controlled with a good degree of reproducibility.  (+info)

Bone response to a Ca- and P-enriched titanium surface obtained by anodization. (13/64)

This study evaluated bone response to a Ca- and P- enriched titanium (Ti) surface treated by a multiphase anodic spark deposition coating (BSP-AK). Two mongrel dogs received bilateral implantation of 3 Ti cylinders (4.1 x 12 mm) in the humerus, being either BSP-AK treated or untreated (machined - control). At 8 weeks postimplantation, bone fragments containing the implants were harvested and processed for histologic and histomorphometric analyses. Bone formation was observed in cortical area and towards the medullary canal associated to approximately 1/3 of implant extension. In most cases, in the medullary area, collagen fiber bundles were detected adjacent and oriented parallel to Ti surfaces. Such connective tissue formation exhibited focal areas of mineralized matrix lined by active osteoblasts. The mean percentages of bone-to-implant contact were 2.3 (0.0-7.2 range) for BSP-AK and 0.4 (0.0-1.3 range) for control. Although the Mann-Whitney test did not detect statistically significant differences between groups, these results indicate a trend of BSP-AK treated surfaces to support contact osteogenesis in an experimental model that produces low bone-to-implant contact values.  (+info)

A comparative study of AgX (X = Cl(-), Br(-), I(-) and N(3)(-)) solid-phase reactors for flow-injection determination of cyanide in electroplating wastewater. (14/64)

In this study, a rapid flow injection-flame atomic absorption spectrometry for cyanide detection was developed. Different AgX (where X is Cl(-), Br(-), I(-) and N(3)(-)) solid-phase reagents (SPR) were tested for indirect determination of cyanide. In a single-line FIA system, the cyanide was allowed to react with AgX SPR, which in turn changed Ag ions in AgX to silver cyanide complexes in a sodium hydroxide carrier stream. The eluent containing the analyte as silver cyanide complexes was measured by FAAS. The calibration curve was linear up to 30 mg l(-1) with a detection limit of 0.05 mg l(-1) for cyanides. The sampling rate and the relative standard deviation were <1.09% and >200 h(-1), respectively. The method was applied to the determination of cyanide in electroplating wastewater.  (+info)

An overview of biofunctionalization of metals in Japan. (15/64)

 (+info)

Electrochemical surface modification of titanium in dentistry. (16/64)

Titanium and its alloys have good biocompatibility with body cells and tissues and are widely used for implant applications. However, clinical procedures place more stringent and tough requirements on the titanium surface necessitating artificial surface treatments. Among the many methods of titanium surface modification, electrochemical techniques are simple and cheap. Anodic oxidation is the anodic electrochemical technique while electrophoretic and cathodic depositions are the cathodic electrochemical techniques. By anodic oxidation it is possible to obtain desired roughness, porosity and chemical composition of the oxide. Anodic oxidation at high voltages can improve the crystallinity of the oxide. The chief advantage of this technique is doping of the coating of the bath constituents and incorporation of these elements improves the properties of the oxide. Electrophoretic deposition uses hydroxyapatite (HA) powders dispersed in a suitable solvent at a particular pH. Under these operating conditions these particles acquire positive charge and coatings are obtained on the cathodic titanium by applying an external electric field. These coatings require a post-sintering treatment to improve the coating properties. Cathodic deposition is another type of electrochemical method where HA is formed in situ from an electrolyte containing calcium and phosphate ions. It is also possible to alter structure and/or chemistry of the obtained deposit. Nano-grained HA has higher surface energy and greater biological activity and therefore emphasis is being laid to produce these coatings by cathodic deposition.  (+info)